
True/False valuation of temporal logic formulae

The True/False valuation of temporal logic formulae is not well adapted
to several problems :

parameter search, optimization and control of continuous models

quantitative estimation of robustness
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→ need for a continuous degree of satisfaction of temporal logic formulae

How far is the system from verifying the specification ?
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Model-Checking Generalized to Constraint Solving

QFLTL(R)

Φ*=F([A]≥x 
       ∧F([A]≤y))

Constraint solving

the formula is true for any 
x≤10 ∧ y≥2

Φ=F([A]≥7 
       ∧F([A]≤0))

Model-checking

the formula is false
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Violation degree of an LTL formula

Definition of violation degree vd(T , φ) and satisfaction degree sd(T , φ)

In the variable space of φ∗, original formula φ is single point var(φ).
vd(T , φ) = minv∈Dφ∗ (T )d(v , var(φ)) sd(T , φ) = 1

1+vd(T ,φ) ∈ [0, 1]
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Learning kinetic parameter values from LTL specifications

simple model of the yeast cell cycle from [Tyson PNAS 91]

models Cdc2 and Cyclin interactions (6 variables, 8 kinetic
parameters)
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amplitude z=x-y
goal : z = 0.3

→ solution found after 30s (100 calls to the fitness function)
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LTL Continuous Satisfaction Diagram

Example with :

yeast cell cycle model [Tyson PNAS 91]

oscillation of at least 0.3

φ∗: F( [A]>x ∧ F([A]<y) ); amplitude x-y≥0.3

k
4

k6

.

.Violation degree in parameter space

. .

.

pA pB

pC

Proc. Natl. Acad. Sci. USA 88 (1991)
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FIG. 2. Qualitative behavior of the cdc2-cyclin model of cell-
cycle regulation. The control parameters are k4, the rate constant
describing the maximum rate of MPF activation, and k6, the rate
constant describing dissociation ofthe active MPF complex. Regions
A and C correspond to stable steady-state behavior of the model;
region B corresponds to spontaneous limit cycle oscillations. In the
stippled area the regulatory system is excitable. The boundaries
between regions A, B, and C were determined by integrating the
differential equations in Table 1, for the parameter values in Table 2.
Numerical integration was carried out by using Gear's algorithm for
solving stiffordinary differential equations (32). The "developmental
path" 1 ... 5 is described in the text.

so k6 abruptly increases 2-fold. Continued cell growth causes
k6(t) again to decrease, and the cycle repeats itself. The
interplay between the control system, cell growth, and DNA
replication generates periodic changes in k6(t) and periodic
bursts of MPF activity with a cycle time identical to the
mass-doubling time of the growing cell.

Figs. 2 and 3 demonstrate that, depending on the values of
k4 and k6, the cell cycle regulatory system exhibits three

b

0.4
a 100

0 20 40 60 80 100 0 20 40 60 80 100

t, min t, min

different modes of control. For small values of k6, the system
displays a stable steady state of high MPF activity, which I
associate with metaphase arrest of unfertilized eggs. For
moderate Values of k6, the system executes autonomous
oscillations reminiscent of rapid cell cycling in early em-
bryos. For large values of k6, the system is attracted to an
excitable steady state of low MPF activity, which corre-
sponds to interphase arrest of resting somatic cells or to
growth-controlled bursts of MPF activity in proliferating
somatic cells.

Midblastula Traiisiton

A possible developmental scenario is illustrated by the path
1 ... 5 in Fig. 2. Upon fertilization, the metaphase-arrested
egg (at point 1) is stimulated to rapid cell divisions (2) by an
increase in the activity of the enzyme catalyzing step 6 (28).
During the early embryonic cell cycles (2-+ 3), the regulatory
system is executing autonomous oscillations, and the control
parameters, k4 and k6, increase as the nuclear genes coding
for these enzymes are activated. At midblastula (3), auton-
omous oscillations cease, and the regulatory system enters
the excitable domain. Cell division now becomes growth
controlled. As cells grow, k6 decreases (inhibitor diluted)
and/or k4 increases (activator accumulates), which drives the
regulatory system back into domain B (4 -S 5). The subse-
quent burst of MPF activity triggers mitosis, causes k6 to
increase (inhibitor synthesis) and/or k4 to decrease (activator
degradation), and brings the regulatory system back into the
excitable domain (5 -* 4).
Although there is a clear and abrupt lengthening of inter-

division times at MBT, there is no visible increase in cell
volume immediately thereafter (6, 20), so how can we enter-
tain the idea that cell division becomes growth controlled
after MBT? In the paradigm ofgrowth control ofcell division,
cell "size" is never precisely specified, because no one
knows what molecules, structures, or properties are used by
cells to monitor their size. Thus, even though post-MBT cells

C

r k6' min-1

0 100 200 300 400 500

t, min

FIG. 3. Dynamical behavior of the cdc2-cyclin model. The curves are total cyclin ([YT] = [Y] + [YP] + [pM] + [M]) and active MPF [Ml
relative to total cdc2 ([CT] = [C2] + [CP] + [pM] + [MI). The differential equations in Table 1, for the parameter values in Table 2, were solved
numerically by using a fourth-order Adams-Moulton integration routine (33) with time step = 0.001 min. (The adequacy of the numerical
integration was checked by decreasing the time step and also by comparison to solutions generated by Gear's algorithm.) (a) Limit cycle
oscillations for k4 = 180 min-', k6 = 1 min- (point x in Fig. 2). A "limit cycle" solution of a set of ordinary differential equations is a periodic
solution that is asymptotically stable with respect to small perturbations in any of the dynamical variables. (b) Excitable steady state for k4 =
180 min 1, k6 = 2 min' (point + in Fig. 2). Notice that the ordinate is a logarithmic scale. The steady state of low MPF activity ([M]/[CT]
= 0.0074, [YT]/[CT] = 0.566) is stable with respect to small perturbations of MPF activity (at 1 and 2) but a sufficiently large perturbation of
[Ml (at 3) triggers a transient activation of MPF and subsequent destruction of cyclin. The regulatory system then recovers to the stable steady
state. (c) Parameter values as in b except that k6 is now a function of time (oscillating near point + in Fig. 2). See text for an explanation of
the rules for k6(Q). Notice that the period between cell divisions (bursts in MPF activity) is identical to the mass-doubling time (Td = 116 min
in this simulation). Simulations with different values of Td (not shown) demonstrate that the period between MPF bursts is typically equal to
the mass-doubling time-i.e., the cell division cycle is growth controlled under these circumstances. Growth control can also be achieved
(simulations not shown), holding k6 constant, by assuming that k4 increases with time between divisions and decreases abruptly after an MPF
burst.

7330 Cell Biology: Tyson

Bifurcation diagram LTL satisfaction diagram
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Black-box Randomized Non-linear Optimization Method

Use existing non-linear optimization toolbox for kinetic parameter
search using satisfaction degree as fitness function

We use the state-of-the-art Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) [Hansen Osermeier 01, Hansen 08]

CMA-ES maximizes an objective function in continuous domain in a
black box scenario

CMA-ES uses a probabilistic neighborhood and updates information
in covariance matrix at each move
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Learning Parameter Values from Period Constraints in LTL
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Pb : find values of 8 parameters such that period is 20
φ∗:F(MPFlocalmaximum ∧Time=t1∧ F(MPFlocalmaximum ∧Time=t2) )

( with MPFlocalmaximum : d([MPF])/dt>0 ∧ X(d([MPF])/dt<0) )

period z=t2-t1
goal z=20

→ Solution found after 60s (200 calls to the fitness function)
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Oscillations in MAPK signal transduction cascade

MAPK signaling model [Huang Ferrel PNAS 96]

search for oscillations in 37 dimensions (30 parameters and 7
initial conditions)
→ solution found after 3 min (200 calls to the fitness function)
Oscillations already observed by simulation [Qiao et al. 07]

No negative feedback in the reaction graph, but negative circuits in
the influence graph [Fages Soliman FMSB’08, CMSB’06]
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Coupled Models of Cell Cycle, Circadian Clock, DNA repair

Context of colorectal cancer chronotherapies
EU FP6 TEMPO, EraSysBio C5Sys, coord. F. Lévi INSERM Villejuif

Coupled model of the cell cycle [Tyson Novak 04][Gerard Goldbeter 09]

and the circadian clock [Leloup Goldbeter 99] with condition of
entrainment in period [Calzone Soliman 06]

Coupled model with DNA repair system p53/Mdm2 [Cilberto et al.04],
metabolism of irinotecan, and drug administration optimization [De

Maria Soliman Fages 09 CMSB]
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Basis of Operators of LTL(R)

Atomic propositions: arithmetic expressions with <,≤,=,≥, > over the
state variables (closed by negation)

Duality: ¬Xφ = X¬φ, ¬Fφ = G¬φ, ¬Gφ = F¬φ,
¬(φ U ψ) = (¬ψ W ¬φ), ¬(φ W ψ) = (¬ψ U ¬φ),

Properties: Fφ = true U φ, Gφ = φ W false, φWψ = Gφ ∨ (φU(φ ∧ ψ))

Negation free formulae: expressed with ∧, ∨, F, G, U, X with negations
eliminated down to atomic propositions.
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LTL(R) model-checking

Given a finite trace T and an LTL(R) formula φ

1 label each state with the atomic sub-formulae of φ that are true at
this state;

2 add sub-formulae of the form φ1 U φ2 to the states labeled by φ2

and to the predecessors of states labeled with φ2 as long as they are
labeled by φ1;

3 add sub-formulae of the form φ1 W φ2 to the last state if it is
labeled by φ1, and to the states labeled by φ1 and φ2, and to their
predecessors as long as they are labeled by φ1;

4 add sub-formulae of the form Xφ to the last state if it is labeled by
φ and to the immediate predecessors of states labeled by φ;

5 return the vertices labeled by φ.
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QFLTL(R) Formulae with Variables

Quantifier free LTL formulae, noted φ(y) with free variables y

The satisfaction domain of φ(y) in a trace T is the set of y values for
which φ(y) holds:

DT ,φ(y) = {y ∈ Rq | T |= φ(y)} (1)

For linear constraints over R, satisfaction domains can be computed with
polyhedral libraries.

Biocham uses the Parma Polyhedral Library PPL
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QFLTL(R) constraint solving

The satisfaction domains of QFLTL formulae satisfy the equations:

DT ,φ(y) = Ds0,φ(y),

Dsi ,π(y) = {y ∈ Rm | si |=R π(y)},
Dsi ,φ(y)∧ψ(y) = Dsi ,φ(y) ∩ Dsi ,ψ(y),

Dsi ,φ(y)∨ψ(y) = Dsi ,φ(y) ∪ Dsi ,ψ(y),

Dsi ,Fφ(y) = ∪j∈[i,n]Dsj ,φ(y),

Dsi ,Gφ(y) = ∩j∈[i,n]Dsj ,φ(y),

Dsi ,φ(y)Uψ(y) = ∪j∈[i,n](Dsj ,ψ(y) ∩ ∩k∈[i,j−1]Dsk ,φ(y)),

Dsi ,Xφ(y) =

{
Dsi+1,φ(y), if i < n,
Dsi ,φ(y), if i = n,
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Complexity with bound constraints x > b, x < b

Bound constraints define boxes Ri ∈ Rv .

Let the size of a union of boxes be the least integer k such that
D =

⋃k
i=1Ri .

Proposition (complexity of the solution domain)

The validity domain of a QFLTL formula of size f containing v variables
on a trace of length n is a union of boxes of size less than (nf )2v .

The maximum number of bounds for a variable x is n × f
E.g; F([A] = u ∨ [A] + 1 = u ∨ · · · ∨ [A] + f = u)

F([A1] = X1 ∨ [A1] + 1 = X1 ∨ ... ∨ [A1] + f = X1) ∧ ...
∧ F([Av ] = Xv ∨ [Av ] + 1 = Xv ∨ ... ∨ [Av ] + f = Xv )
has a solution domain of size (nf )v on a trace of n values
with [Ai ] + k all different for 1 ≤ i ≤ v , 0 ≤ k ≤ f .
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Robustness Measure Definition

Robustness defined with respect to :

a biological system

a functionality property Da

a set P of perturbations

General notion of robustness proposed in [Kitano MSB 07]:

Ra,P =

∫
p∈P

Da(p) prob(p) dp

Computational measure of robustness w.r.t. LTL(R) spec:

Rφ,P =

∫
p∈P

sd(T (p), φ) prob(p) dp

where T (p) is the trace obtained by numerical integration of the
ODE for perturbation p
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Robustness analysis w.r.t parameter perturbations

Example with :

cell cycle model [Tyson PNAS 91]

oscillation of amplitude at least 0.2

φ∗: F( [A]>x ∧ F([A]<y) ); amplitude x-y≥0.2

parameters normally distributed, µ = pref , CV=0.2

k
4

k6

.
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FIG. 2. Qualitative behavior of the cdc2-cyclin model of cell-
cycle regulation. The control parameters are k4, the rate constant
describing the maximum rate of MPF activation, and k6, the rate
constant describing dissociation ofthe active MPF complex. Regions
A and C correspond to stable steady-state behavior of the model;
region B corresponds to spontaneous limit cycle oscillations. In the
stippled area the regulatory system is excitable. The boundaries
between regions A, B, and C were determined by integrating the
differential equations in Table 1, for the parameter values in Table 2.
Numerical integration was carried out by using Gear's algorithm for
solving stiffordinary differential equations (32). The "developmental
path" 1 ... 5 is described in the text.

so k6 abruptly increases 2-fold. Continued cell growth causes
k6(t) again to decrease, and the cycle repeats itself. The
interplay between the control system, cell growth, and DNA
replication generates periodic changes in k6(t) and periodic
bursts of MPF activity with a cycle time identical to the
mass-doubling time of the growing cell.

Figs. 2 and 3 demonstrate that, depending on the values of
k4 and k6, the cell cycle regulatory system exhibits three

b

0.4
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different modes of control. For small values of k6, the system
displays a stable steady state of high MPF activity, which I
associate with metaphase arrest of unfertilized eggs. For
moderate Values of k6, the system executes autonomous
oscillations reminiscent of rapid cell cycling in early em-
bryos. For large values of k6, the system is attracted to an
excitable steady state of low MPF activity, which corre-
sponds to interphase arrest of resting somatic cells or to
growth-controlled bursts of MPF activity in proliferating
somatic cells.

Midblastula Traiisiton

A possible developmental scenario is illustrated by the path
1 ... 5 in Fig. 2. Upon fertilization, the metaphase-arrested
egg (at point 1) is stimulated to rapid cell divisions (2) by an
increase in the activity of the enzyme catalyzing step 6 (28).
During the early embryonic cell cycles (2-+ 3), the regulatory
system is executing autonomous oscillations, and the control
parameters, k4 and k6, increase as the nuclear genes coding
for these enzymes are activated. At midblastula (3), auton-
omous oscillations cease, and the regulatory system enters
the excitable domain. Cell division now becomes growth
controlled. As cells grow, k6 decreases (inhibitor diluted)
and/or k4 increases (activator accumulates), which drives the
regulatory system back into domain B (4 -S 5). The subse-
quent burst of MPF activity triggers mitosis, causes k6 to
increase (inhibitor synthesis) and/or k4 to decrease (activator
degradation), and brings the regulatory system back into the
excitable domain (5 -* 4).
Although there is a clear and abrupt lengthening of inter-

division times at MBT, there is no visible increase in cell
volume immediately thereafter (6, 20), so how can we enter-
tain the idea that cell division becomes growth controlled
after MBT? In the paradigm ofgrowth control ofcell division,
cell "size" is never precisely specified, because no one
knows what molecules, structures, or properties are used by
cells to monitor their size. Thus, even though post-MBT cells

C

r k6' min-1

0 100 200 300 400 500

t, min

FIG. 3. Dynamical behavior of the cdc2-cyclin model. The curves are total cyclin ([YT] = [Y] + [YP] + [pM] + [M]) and active MPF [Ml
relative to total cdc2 ([CT] = [C2] + [CP] + [pM] + [MI). The differential equations in Table 1, for the parameter values in Table 2, were solved
numerically by using a fourth-order Adams-Moulton integration routine (33) with time step = 0.001 min. (The adequacy of the numerical
integration was checked by decreasing the time step and also by comparison to solutions generated by Gear's algorithm.) (a) Limit cycle
oscillations for k4 = 180 min-', k6 = 1 min- (point x in Fig. 2). A "limit cycle" solution of a set of ordinary differential equations is a periodic
solution that is asymptotically stable with respect to small perturbations in any of the dynamical variables. (b) Excitable steady state for k4 =
180 min 1, k6 = 2 min' (point + in Fig. 2). Notice that the ordinate is a logarithmic scale. The steady state of low MPF activity ([M]/[CT]
= 0.0074, [YT]/[CT] = 0.566) is stable with respect to small perturbations of MPF activity (at 1 and 2) but a sufficiently large perturbation of
[Ml (at 3) triggers a transient activation of MPF and subsequent destruction of cyclin. The regulatory system then recovers to the stable steady
state. (c) Parameter values as in b except that k6 is now a function of time (oscillating near point + in Fig. 2). See text for an explanation of
the rules for k6(Q). Notice that the period between cell divisions (bursts in MPF activity) is identical to the mass-doubling time (Td = 116 min
in this simulation). Simulations with different values of Td (not shown) demonstrate that the period between MPF bursts is typically equal to
the mass-doubling time-i.e., the cell division cycle is growth controlled under these circumstances. Growth control can also be achieved
(simulations not shown), holding k6 constant, by assuming that k4 increases with time between divisions and decreases abruptly after an MPF
burst.
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Rφ,pA = 0.83, Rφ,pB = 0.43, Rφ,pC = 0.49
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Application to Synthetic Biology in E. Coli

Cascade of transcriptional inhibitions added to E.coli [Weiss et al PNAS 05]

input small molecule aTc output protein EYFP

Specification: EYFP has to remain below 103 for at least 150 min.,
then exceeds 105 after at most 450 min.,
and switches from low to high levels in less than 150 min.
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Specifying the expected behavior in QFLTL(R)

The timing specifications can be formalized in temporal logic as follows:

φ(t1, t2) = G(time < t1 → [EYFP] < 103)
∧ G(time > t2 → [EYFP] > 105)
∧ t1 > 150 ∧ t2 < 450 ∧ t2 − t1 < 150

which is abstracted into

φ(t1, t2, b1, b2, b3) = G(time < t1 → [EYFP] < 103)
∧ G(time > t2 → [EYFP] > 105)
∧ t1 > b1 ∧ t2 < b2 ∧ t2 − t1 < b3

for computing validity domains for b1, b2, b3

with the objective b1 = 150, b2 = 450, b3 = 150
for computing the satisfaction degree in a given trace.
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Improving robustness

Variance-based global sensitivity indices

Si = Var(E(R|Pi ))
Var(R) ∈ [0, 1]

Sγ 20.2 % Sκeyfp ,γ 8.7 %

Sκeyfp 7.4 % SκcI ,γ 6.2 %

SκcI 6.1 % S
κ0
cI
,γ

5.0 %

S
κ0
lacI

3.3 % S
κ0
cI
,κeyfp

2.8 %

S
κ0
cI

2.0 % SκcI ,κeyfp 1.8 %

SκlacI 1.5 % S
κ0
eyfp

,γ
1.5 %

S
κ0
eyfp

0.9 % S
κ0
cI
,κcI

1.1 %

SuaTc
0.4 % S

κ0
cI
,κlacI

0.5 %

total first order 40.7 % total second order 31.2 %

degradation factor γ has the strongest impact on the cascade.

aTc variations have a very low impact

different importance of the basal κ0
eyfp and regulated κeyfp EYFP

production rates

the basal production of EYFP is due to an incomplete repression of the
promoter by CI (high effect of κcI ) rather than a constitutive leakage of
the promoter (low effect of κ0

eyfp).
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