True/False valuation of temporal logic formulae

The True/False valuation of temporal logic formulae is not well adapted
to several problems :

@ parameter search, optimization and control of continuous models
@ quantitative estimation of robustness

@ sensitivity analyses
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True/False valuation of temporal logic formulae

The True/False valuation of temporal logic formulae is not well adapted
to several problems :

@ parameter search, optimization and control of continuous models
@ quantitative estimation of robustness

@ sensitivity analyses

— need for a continuous degree of satisfaction of temporal logic formulae

How far is the system from verifying the specification ?
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Model-Checking Generalized to Constraint Solving

Al T
U R e R R
* o4
+ + +
+ +
+
Y P .
>time
LTL(R)
O=F([A]27
AF([A]<0))
e

Model-checking

the formula is false

3/39
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Model-Checking Generalized to Constraint Solving

time + Tx
LTL(R) QFLTL(R) ¢
d=F([Al=7 O*=F([A]l=x
AF([A]<0)) AF([Al=y))
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Model-checking Constraint solving

the formula is true for any

the formula is false x<10 A y=2

Validity domain D,-(T) for the free variables in ¢* [Fages Rizk CMSB'07]
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Model-Checking Generalized to Constraint Solving

time + Tx
LTL(R) QFLTL(R) ¢
d=F([Al=7 O*=F([A]l=x
AF([A]<0)) AF([Al=y))

rd E N
Model-checking | Constraint solving

the formula is true for any

the formula is false vd=2 sd=1/3 Xx<10 A y=2

Validity domain D,-(T) for the free variables in ¢* [Fages Rizk CMSB'07]
Violation degree vd(T, ¢) = distance(val(¢), Dy-(T))
Satisfaction degree sd(T,¢) = 1150755 € [0,1]
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Violation degree of an LTL formula

Definition of violation degree vd( T, ¢) and satisfaction degree sd( T, ¢)

In the variable space of ¢*, original formula ¢ is single point var(¢).

vd(T,$) = min,ep,.(T)d(v, var(¢)) sd(T,¢) = 1++(T,¢) € [0,1]
T
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Ga =F(NBAF(AS) | Ples) vd=0 )
@y = F(Al=6 A F([A<0)) L 9le0) vd=2 (X)
b =FIARIZAF(AKO) | ya0) vd=2v2 (X)
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Violation degree of an LTL formula

Definition of violation degree vd( T, ¢) and satisfaction degree sd( T, ¢)

In the variable space of ¢*, original formula ¢ is single point var(¢).

vd(T, ¢) = minveDw(T)d(v, var(¢)) sd(T,¢) = 1++(T,¢) € [0,1]
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Learning kinetic parameter values from LTL specifications

@ simple model of the yeast cell cycle from [Tyson PNAS 91]

@ models Cdc2 and Cyclin interactions (6 variables, 8 kinetic
parameters)
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Learning kinetic parameter values from LTL specifications

@ simple model of the yeast cell cycle from [Tyson PNAS 91]

@ models Cdc2 and Cyclin interactions (6 variables, 8 kinetic
parameters)

SN I\ h

@ Pb : find values of 8 parameters such that amplitude is > 0.3
¢": F([A]l>x A F([A]<y) )
amplitude z=x-y
goal : z=10.3
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Learning kinetic parameter values from LTL specifications

@ simple model of the yeast cell cycle from [Tyson PNAS 91]

@ models Cdc2 and Cyclin interactions (6 variables, 8 kinetic
parameters)

P—sp*

@ Pb : find values of 8 parameters such that amplitude is > 0.3
¢": F([A]l>x A F([A]<y) )
amplitude z=x-y
goal : z=10.3

e — solution found after 30s (100 calls to the fitness function)
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LTL Continuous Satisfaction Diagram

Example with :
@ yeast cell cycle model [Tyson PNAS 91]
@ oscillation of at least 0.3
¢*: F( [A]>x A F([A]<y) ); amplitude x-y>0.3

1000 Violation degree in parameter space

100

k. min!

01 1.0 10
ks.min"
Bifurcation diagram LTL satisfaction diagram
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Black-box Randomized Non-linear Optimization Method

@ Use existing non-linear optimization toolbox for kinetic parameter
search using satisfaction degree as fitness function
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Black-box Randomized Non-linear Optimization Method

@ Use existing non-linear optimization toolbox for kinetic parameter
search using satisfaction degree as fitness function

@ We use the state-of-the-art Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) [Hansen Osermeier 01, Hansen 08]
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Black-box Randomized Non-linear Optimization Method

@ Use existing non-linear optimization toolbox for kinetic parameter
search using satisfaction degree as fitness function

@ We use the state-of-the-art Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) [Hansen Osermeier 01, Hansen 08]

o CMA-ES maximizes an objective function in continuous domain in a
black box scenario
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Black-box Randomized Non-linear Optimization Method

@ Use existing non-linear optimization toolbox for kinetic parameter
search using satisfaction degree as fitness function

@ We use the state-of-the-art Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) [Hansen Osermeier 01, Hansen 08]

o CMA-ES maximizes an objective function in continuous domain in a
black box scenario

o CMA-ES uses a probabilistic neighborhood and updates information
in covariance matrix at each move
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Learning Parameter Values from Period Constraints in LTL
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Learning Parameter Values from Period Constraints in LTL

@ Pb : find values of 8 parameters such that period is 20
(z)*:F(MPFIocalmaximum ATime=tIA F(MPF/ocalmaximum /\Tlme:tz) )
( with MPF ocaimaximum © d([MPF])/dt>0 A X(d([MPF])/dt<0) )
period z=t2-t1
goal z=20
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Learning Parameter Values from Period Constraints in LTL

w2

@ Pb : find values of 8 parameters such that period is 20
¢)*:F(MPFIocalmaximum ATime=tIA F(MPF/ocalmaximum /\Tlme:tz) )
( with MPF jocaimaximum © d([MPF])/dt>0 A X(d([MPF])/dt<0) )
period z=t2-t1
goal z=20
e — Solution found after 60s (200 calls to the fitness function)
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Oscillations in MAPK signal transduction cascade

@ MAPK signaling model [Huang Ferrel PNAS 96]
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Oscillations in MAPK signal transduction cascade

@ MAPK signaling model [Huang Ferrel PNAS 96]
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e search for oscillations in 37 dimensions (30 parameters and 7
initial conditions)
— solution found after 3 min (200 calls to the fitness function)
Oscillations already observed by simulation [Qiao et al. 07]
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Oscillations in MAPK signal transduction cascade

@ MAPK signaling model [Huang Ferrel PNAS 96]
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e search for oscillations in 37 dimensions (30 parameters and 7
initial conditions)
— solution found after 3 min (200 calls to the fitness function)
Oscillations already observed by simulation [Qiao et al. 07]

@ No negative feedback in the reaction graph, but negative circuits in
the influence graph [Fages Soliman FMSB’08, CMSB'06]
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Coupled Models of Cell Cycle, Circadian Clock, DNA repair

@ Context of colorectal cancer chronotherapies
EU FP6 TEMPO, EraSysBio C5Sys, coord. F. Lévi INSERM Villejuif

@ Coupled model of the cell cycle [Tyson Novak 04][Gerard Goldbeter 09]
and the circadian clock [Leloup Goldbeter 99] with condition of
entrainment in period [Calzone Soliman 06]

e Coupled model with DNA repair system p53/Mdm2 [Cilberto et al.04],
metabolism of irinotecan, and drug administration optimization [De
Maria Soliman Fages 09 CMSB]
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Basis of Operators of LTL(R)

Atomic propositions: arithmetic expressions with <, <, =, > > over the
state variables (closed by negation)

Duality: =X¢ = X—¢, =-F¢p = G-, -G¢ = F¢,
(¢ U )= (= W =9), (¢ W ) = (¢ U —9),

Properties: Fo = true U ¢, Gp = ¢ W false, oW = Go Vv (oU(o A ¢))

Negation free formulae: expressed with A, V, F, G, U, X with negations
eliminated down to atomic propositions.
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LTL(R) model-checking

Given a finite trace T and an LTL(R) formula ¢

@ label each state with the atomic sub-formulae of ¢ that are true at
this state;

@ add sub-formulae of the form ¢; U ¢, to the states labeled by ¢,

and to the predecessors of states labeled with ¢, as long as they are
labeled by ¢1;

© add sub-formulae of the form ¢; W ¢, to the last state if it is
labeled by ¢4, and to the states labeled by ¢; and ¢», and to their
predecessors as long as they are labeled by ¢1;

Q add sub-formulae of the form X¢ to the last state if it is labeled by
¢ and to the immediate predecessors of states labeled by ¢;

@ return the vertices labeled by ¢.
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QFLTL(R) Formulae with Variables

Quantifier free LTL formulae, noted ¢(y) with free variables y

The satisfaction domain of ¢(y) in a trace T is the set of y values for
which ¢(y) holds:

Drgy) =1y €ERY| T = o(y)} (1)

For linear constraints over R, satisfaction domains can be computed with
polyhedral libraries.

Biocham uses the Parma Polyhedral Library PPL
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QFLTL(R) constraint solving

The satisfaction domains of QFLTL formulae satisfy the equations:

D1.6(y) = Psy6(y)»

Dy n(y)y =1y €ER™ | 5; Fr 7(y)}

Ds; s(y)ruty) = Psioy) N Psi up(y)»

D, py)virty) = Psioty) Y Dsiuy)»

Ds; fo(y) = Yjelin Ps.oy):

Ds; 6o(y) = Njeli.n Ps;,o(y)

Ds, s(y)uu(y) = Yjelinl(Psp(9) N Nielij—1 Psi.oly)):

B D5f+17¢(y), if i < n,
® Dg xé(y) = { Ds. b(y)» if i = n,
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Complexity with bound constraints x > b, x < b

Bound constraints define boxes R; € R".

Let the size of a union of boxes be the least integer k such that
D=, R

Proposition (complexity of the solution domain)

The validity domain of a QFLTL formula of size f containing v variables
on a trace of length n is a union of boxes of size less than (nf)?".

The maximum number of bounds for a variable x is n x f
Eg F((Al=uV[Al+1=uV---V[Al+f=u)

F([Al) = Xa VAl +1=Xi V.. VIA] +F=X1) A ..
ANFJA] =X, VIA]+1=X, V.. VIA]+T=X)
has a solution domain of size (nf)¥ on a trace of n values
with [A;] + k all different for 1 <i<v,0< k < f.
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Robustness Measure Definition

Robustness defined with respect to :
@ a biological system
@ a functionality property D,

@ a set P of perturbations

General notion of robustness proposed in [Kitano MSB 07]:

Rap = / D.(p) prob(p) dp
peP
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Robustness Measure Definition

Robustness defined with respect to :
@ a biological system
@ a functionality property D,

@ a set P of perturbations

General notion of robustness proposed in [Kitano MSB 07]:

Rap = / D.(p) prob(p) dp
peP

Computational measure of robustness w.r.t. LTL(R) spec:

R = / =T (p).0) prob(p)

where T(p) is the trace obtained by numerical integration of the
ODE for perturbation p
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Robustness analysis w.r.t parameter perturbations

Example with :
@ cell cycle model [Tyson PNAS 91]
@ oscillation of amplitude at least 0.2
¢*: F( [A]>x A F(JA]<y) ); amplitude x-y>0.2
@ parameters normally distributed, p = prr, CV=0.2

1000 Violation degree in parameter space

10
01 10 10 .
1

kg, min”

R¢7PA =0.83, Rqﬁ,pB =0.43, R¢7PC =0.49
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Application to Synthetic Biology in E. Coli

Cascade of transcriptional inhibitions added to E.coli [Weiss et al PNAS 05]

input small molecule aTc output protein EYFP
aTc
L
TetR > Lacl > CI > EYFP
—_— [ . [ ‘ [
tetR lacl ol eyfp

o
£
2
o
g
2

(]
o 10 200 3-:-:tm 500 600 700 800 800
) JE—

time

Specification: EYFP has to remain below 103 for at least 150 min.,
then exceeds 10° after at most 450 min.,
and switches from low to high levels in less than 150 min.
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Specifying the expected behavior in QFLTL(R)

The timing specifications can be formalized in temporal logic as follows:

o(t1, 1) = G(time < t; — [EYFP] < 103)
A G(time > t, — [EYFP] > 10)
A t1 >150At <450 A tr — t7 < 150

which is abstracted into

B(t1, ta, by, by, b3) = G(time < t; — [EYFP] < 103)
A G(time > t, — [EYFP] > 10°)
AN t1>blAtb < b Ath—1t; < bs

for computing validity domains for by, by, b3

with the objective by = 150, b, = 450, b3 = 150
for computing the satisfaction degree in a given trace.
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Improving robustness

Variance-based global sensitivity indices

5, 202% S 87%
eyfp>

Steyty 7.4% ey 6.2%

roel 6.1% '{g/”Y 5.0%

3.3% 2.8%

Var(E(RIP,) oy 20% o 8%

S=vmE@m cpy| sy | 0% | s | e

K Jacl 1.5% SNU -~ 1.5%
eyfp’

S.0 0.9% So . 1.1%

i % o 0.5%

YaTc 0.4% '“g/’*ilacl 270

total first order | 40.7% || total second order | 31.2%

degradation factor v has the strongest impact on the cascade.
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Improving robustness

Variance-based global sensitivity indices

S, 202% 5. - 8.7%
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total first order | 40.7% || total second order | 31.2%

degradation factor v has the strongest impact on the cascade.
aTc variations have a very low impact

difFeren'f importance of the basal Iigyfp and regulated K¢y, EYFP
production rates
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Improving robustness

Variance-based global sensitivity indices

S, 202% L 8.7%
Steyty 7.4% gy 6.2%
[ 3% 0 . 8%
Var(E(RIP,) s 20% S YT
S=YrEm) ey | sy |eo% | sl | e
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" eyfp RepFel
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1> Flacl
total first order | 40.7% || total second order | 31.2%

degradation factor v has the strongest impact on the cascade.
aTc variations have a very low impact

difFeren'f importance of the basal Iigyfp and regulated K¢y, EYFP
production rates

the basal production of EYFP is due to an incomplete repression of the
promoter by Cl (high effect of k) rather than a constitutive leakage of

the promoter (low effect of Iigyfp).
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