Overview of the Tutorial

Introduction

Transposing programming concepts to the analysis of living processes
Rule-based modeling of biochemical systems
" Syntax: molecules, reactions, regulations, SBML/SBGN Biocham notations
" Semantics: Boolean, Differential and Stochastic interpretations of reactions
" Static analyses: consistency, influence graph circuits, protein functions,&
" Examples in cell signaling, gene expression, virus infection, cell cycle
Temporal Logic based formalization of biological properties
" Qualitative model-checking in propositional Computation Tree Logic CTL
" Quantitative model-checking in Linear Time Logic LTL(R)
" Parameter search in high dimension w.r.t. LTL(R) specifications
" Robustness and sensitivity analyses w.r.t. LTL(R) specifications
Conclusion
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Cell Cycle Control by Cyclins: G12S->G2->M

Cdk1-cyclin B

Cdk1-cyclin A
G, M

Cdk2Z-cyelin A

Sir Paul Nurse
Nobel prize 2001

Cdk2-cyclin E

G1l: CdK4-CycD S: Cdk2-CycA G2,M: Cdk1-CycA
Cdk6-CycD Cdk1-CycB (MPF)
Cdk2-CycE

2 Francois Fages - Tutorial ICSB'10 Edinburgh Wl NRIA



Chromosome-segregation
Spindle-assembly checkpoint
checkpoint l
Mad?2 APC-Cdh1
ac polyubiquitination «— Cdc14 — Sic1
l of B-type cyclins
APC-Cdc20 | =
ATM/R polyubiguitination Telooh b
m l of securin e l m
53 : p53
DNA-damage }naphasa D':'JALdarm:ga
checkpoint l bt b
p21CIP M Cyclin D-CDK4/6 |— p21¢P
Cyclin A/B-CDK1 ——— M-phase
/' entry
Cd%EC S-phase «— Cyclin E/A-CDK2
entry 4
I
Jnreplicated-DNA T _ p21-iF Cdc25A
checkpoint Cyclin A-CDK2 T
i T | p53
p21CP  Cdc25A ONA-cannge
= checkpoint
T ATM/R — Chk1/2
DNA-damage  "3°
checkpoint T
ATM/R — Chk1/2
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Kohn s map detalil for Cdk2

Complexation with CycA and CycE o e -
e,
ca. @ _';t.]:j}‘ﬂ__l ~ i
Biocham Rule Patterns: 606 L1 s | | rE(edk)
~—Skp2r i
cdk2~$P + cycA-$C => cdk2~$P-cycA-$C veleyeBee~——o | p puie

where $C in {_,cksl}
cdk2~$P + cycE~$Q0-$C => cdk2~$P-cycE~$Q-5C
where $C in {_,cksl}
p57 + cdk2~$P-cycA-$C => p57-cdk2~$SP-cycA-S$SC
where $C in { , cksl}.
cycE-$C =[cdk2~{p2}-cycE-$S]=> cycE~{T380}-$SC
where $S in {_, cksl} and $C in {_, cdk2~?, cdk2~7?-cksl}
Total: 147 rule patterns 2733 expanded rules [Chiaverini Danos 03]
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Computation Tree Logic CTL

Temporal logics extend classical logic with modal operators for time & non-det.

Introduced for program verification by [Pnueli 77{

Non-det. E A
Time exists always
X EX(9) AX(9)
next time
F EF(¢) AF(9)
finally - AG(= ¢) liveness
G EG(¢) AG()
globally - AF(= ¢) safety
U E(@1Ud2) | A(PLlU¢2)
until
6
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F,CVE,U
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Non-determinism E, A
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Biological Properties formalized in CTL
(1/3)

About reachability:
Can the cell produce some protein P? reachable (P)==EF (P)
Can the cell produce P, Q and not R?

7 Francois Fages - Tutorial ICSB'10 Edinburgh Wl NRIA



Biological Properties formalized in CTL
(1/3)

About reachability:
Can the cell produce some protein P? reachable (P)==EF (P)
Can the cell produce P, Q and not R? reachable (P"Q"-R)
Can the cell always produce P?
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Biological Properties formalized in CTL
(1/3)

About reachability:
Can the cell produce some protein P? reachable (P)==EF (P)
Can the cell produce P, Q and not R? reachable (P"Q"-R)
Can the cell always produce P? AG (reachable (P))

About pathways:

Can the cell reach a set s of (partially described) states while passing by
another set of states s,?
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Biological Properties formalized in CTL
(1/3)

About reachability:
Can the cell produce some protein P? reachable (P)==EF (P)
Can the cell produce P, Q and not R? reachable (P"Q"-R)
Can the cell always produce P? AG (reachable (P))

About pathways:

Can the cell reach a set s of (partially described) states while passing by
another set of states s,? EF (s, EFs)

Is it possible to produce P without Q ?
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Biological Properties formalized in CTL
(1/3)

About reachability:
Can the cell produce some protein P? reachable (P)==EF (P)
Can the cell produce P, Q and not R? reachable (P"Q"-R)
Can the cell always produce P? AG (reachable (P))

About pathways:

Can the cell reach a set s of (partially described) states while passing by
another set of states s,? EF (s, EFs)

Is it possible to produce P without Q ? E(~Q U P)
|s state s, a necessary checkpoint for reaching state s?

checkpoint (s,,s)== " E(-s, U s)
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Biological Properties formalized in CTL
(1/3)

About reachability:
Can the cell produce some protein P? reachable (P)==EF (P)
Can the cell produce P, Q and not R? reachable (P"Q"-R)
Can the cell always produce P? AG (reachable (P))

About pathways:

Can the cell reach a set s of (partially described) states while passing by
another set of states s,? EF (s, EFs)

Is it possible to produce P without Q ? E(~Q U P)
|s state s, a necessary checkpoint for reaching state s?

checkpoint (s,,s)== " E(-s, U s)

" Is s, always a checkpoint for s? AG (- s —> checkpoint (s,,s))
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Biological Properties formalized in CTL
(2/3)

About stability:
' |s state s a stable state? stable (s)== AG(s)
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Biological Properties formalized in CTL
(2/3)

About stability:
|S state s a stable state? stable (s)== AG(s)
Is s a steady state (with possibility of escaping) ? steady (s) ==EG (s)

Can the cell reach a stable state s?

14 Francois Fages - Tutorial ICSB'10 Edinburgh Wl NRIA



Biological Properties formalized in CTL
(2/3)

About stability:
|S state s a stable state? stable (s)== AG(s)
Is s a steady state (with possibility of escaping) ? steady (s) ==EG (s)

Can the cell reach a stable state s? EF (stable (s))
alternance of path quantifiers EFAG o,
not in Linear Time Logic LTL (fragment without path quantifiers)
FG @isnotin LTL

Must the cell reach a stable state s?
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Biological Properties formalized in CTL
(2/3)

About stability:
|S state s a stable state? stable (s)== AG(s)
Is s a steady state (with possibility of escaping) ? steady (s) ==EG (s)

Can the cell reach a stable state s? EF (stable (s))
alternance of path quantifiers EFAG o,
not in Linear Time Logic LTL (fragment without path quantifiers)
FG @isnotin LTL

Must the cell reach a stable state s? AG (stable(s))

What are the stable states?
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Biological Properties formalized in CTL
(2/3)

About stability:
" |s a set of states s a stable state? stable (s)== AG(s)
Is s a steady state (with possibility of escaping) ? steady (s) ==EG (s)

Can the cell reach a stable state s? EF (stable (s))
alternance of path quantifiers EFAG o,
not in Linear Time Logic LTL (fragment without path quantifiers)
FG @isnotin LTL

" Must the cell reach a stable state s? AG (stable(s))

" What are the stable states? Not expressible in CTL.
needs to combine CTL with search [Chan 00, Calzone-Chabrier-Fages-Soliman 05,

Fages-Rizk 07 09].
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Biological Properties formalized in CTL
(3/3)

About durations:
How long does it take for a molecule to become activated?
In a given time, how many Cyclins A can be accumulated?
What is the duration of a given cell cycle s phase?
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Biological Properties formalized in CTL
(3/3)

About durations:

" How long does it take for a molecule to become activated?
In a given time, how many Cyclins A can be accumulated?
What is the duration of a given cell cycle s phase?

CTL operators abstract from durations. Time intervals can be modeled in FOL by
adding numerical constraints for start times and durations.
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Biological Properties formalized in CTL
(3/3)

About durations:

" How long does it take for a molecule to become activated?
In a given time, how many Cyclins A can be accumulated?
What is the duration of a given cell cycle s phase?

CTL operators abstract from durations. Time intervals can be modeled in FOL by
adding numerical constraints for start times and durations.

About oscillations:

" Can the system exhibit a cyclic behavior w.r.t. the presence of P ?
oscil (P)== EG((F —-P) ~ (F P))

temporal operators not preceded by a path operator: CTL* formula

approximation in CTL: oscil (P)== EG((EF -P) ~ (EF P))
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Basic CTL Model-Checking Algorithm

Model Checking is an algorithm for computing, in a given finite Kripke structure K
the set of states satisfying a CTL formula:

{siS:s|=¢}.
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Basic CTL Model-Checking Algorithm

Model Checking is an algorithm for computing, in a given finite Kripke structure K
the set of states satisfying a CTL formula:

{siS:s|=¢}.
Represent K as a (finite) graph and iteratively label the nodes with the subformulas
of gwhich are true in that node.
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Basic CTL Model-Checking Algorithm

Model Checking is an algorithm for computing, in a given finite Kripke structure K
the set of states satisfying a CTL formula:

{siS:s|=¢}.
Represent K as a (finite) graph and iteratively label the nodes with the subformulas
of gwhich are true in that node.

Add @ to the states satisfying ¢
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Basic CTL Model-Checking Algorithm

Model Checking is an algorithm for computing, in a given finite Kripke structure K
the set of states satisfying a CTL formula:

{siS:s|=¢}.
Represent K as a (finite) graph and iteratively label the nodes with the subformulas
of gwhich are true in that node.

Add @ to the states satisfying ¢
" Add EF ¢ (EX @) to the (immediate) predecessors of states labeled by ¢
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Basic CTL Model-Checking Algorithm

Model Checking is an algorithm for computing, in a given finite Kripke structure K
the set of states satisfying a CTL formula:

{siS:s|=¢}.
Represent K as a (finite) graph and iteratively label the nodes with the subformulas
of gwhich are true in that node.

Add @ to the states satisfying @
" Add EF ¢ (EX @) to the (immediate) predecessors of states labeled by ¢
Add E(¢pl U @2 ) to the predecessor states of @2 while they satisfy ¢l
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Basic CTL Model-Checking Algorithm

Model Checking is an algorithm for computing, in a given finite Kripke structure K
the set of states satisfying a CTL formula:

{siS:s|=¢}.
Represent K as a (finite) graph and iteratively label the nodes with the subformulas
of gwhich are true in that node.

Add @ to the states satisfying @
" Add EF ¢ (EX @) to the (immediate) predecessors of states labeled by ¢
" Add E(pl U @2) to the predecessor states of @2 while they satisfy ¢l

Add EG ¢ to the states for which there exists a path leading to a non trivial
strongly connected component of the subgraph of states satisfying .
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Basic CTL Model-Checking Algorithm

Model Checking is an algorithm for computing, in a given finite Kripke structure K
the set of states satisfying a CTL formula:

{siS:s|=¢}.
Represent K as a (finite) graph and iteratively label the nodes with the subformulas
of gwhich are true in that node.

Add @ to the states satisfying @
" Add EF ¢ (EX @) to the (immediate) predecessors of states labeled by ¢
" Add E(pl U @2) to the predecessor states of @2 while they satisfy ¢l

Add EG ¢ to the states for which there exists a path leading to a non trivial
strongly connected component of the subgraph of states satisfying .

Model-checking algorithm in O(|K]|*|q)).
Complexity: CTL model-checking is Ptime-complete,
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Symbolic CTL Model-Checking Algorithm

Represent finite Kripke structures using Boolean constraints for
" sets of states as a boolean constraint c(V)
" the transition relation as a boolean constraint r(V,V )

28 Francois Fages - Tutorial ICSB'10 Edinburgh Wl NRIA



Symbolic CTL Model-Checking Algorithm

Represent finite Kripke structures using Boolean constraints for

" sets of states as a boolean constraint c(V)
" the transition relation as a boolean constraint r(V,V )

Ordered Binary Decision Diagrams OBDD [Bryant 85] provide canonical forms for
Boolean formulas (decides SAT in NP, and equivalence TAUT in co-NP)

X

(XV=Y)A(YV-Z)A(ZVX) W

and %

y
(XV=Z)A(ZV-y)A(YV-X) /\ /\

are equivalent, they z

have the same BDD(x,y,z) W
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Mammalian Cell Cycle Control Benchmark

147-2733 rules, 165 proteins and genes, 500 variables, 25 states.

BIOCHAM NuSMV model-checker time in seconds: [Chabrier Fages 03 CMSB]

Initial state G2 Query: Time:
compiling 29s

Reachability G1 EF CycE A
Reachability G1 EF CycD 1.9s
Reachability G1 EF PCNA-CycD 1.7s
Checkpoint - EF (= Cdc25~{Nterm} 2.2s

for mitosis complex U Cdk1~{Thr161}-CycB)

Oscillations CycA EG ((EF = CycA) & (EF CycA)) 31.8s

Osciallations CycB EG ((EF = CycB) & (EF CycB)) false! 6S

31
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Linear Time Logic with Constraints LTL(R)

Constraints over concentrations and derivatives as formulae over the reals:
[M] > 0.2
MI+[P] > [Q]
d([M]/dt < O

LTL(R) formulae
minimum threshold value reached: F([M]>0.2)
minimum threshold value reached and maintained: FG([M]>0.2)
local maximum V: F ((M]<V & F ([M]=V & F ([M]<V) )
F ((M]>2 & F (d([M])/dt<0 & F ([M]<2 & d([M])/dt>0 & F(d([M])/dt<0))))
oscil(M,n) defined as at least n alternances of the sign of the derivative

32 Francois Fages - Tutorial ICSB'10 Edinburgh Wl NRIA



LTL(R) Constraints with Real-time Variable

LTL(R) formulae with real-time variable

Threshold value with a minimum delay
F([M]>0.2) & G(Time<5 [ [M]<0.2)

Numerical data time series (for curve fitting)
F(Time=1 & [M]=0.05 & F(Time=2 & [M]=0.12& F(Time=3 & [M]=0.25)))

Period constraint

Period(A,75)= 0t v F(Time =t & [A] = v & d(JA])/dt > 0 & X(d([A])/dt < 0O)
& F(Time =t + 75 & [A] = v & d([A])/dt > 0 & X(d([A])/dt < 0)))

33 Francois Fages - Tutorial ICSB'10 Edinburgh Wl NRIA



Numerical Integration of ODE Models

dX/dt = f(X).
Initial conditions X,

|dea: discretize time t,, t,=t,+At,, t,=t,+At,, &
and compute a numerical trace (t,,X,,dX,/dt), (t;,X;,dX,/dt), &, (t,, X ,dX /dt)

Euler s method t,,=t+ At X, =X+(X)*At

+1 i

error estimation E(X.,,)=|f(X)-f(X.,,)|*At

Runge-Kutta s method intermediate computations at At/2
adaptive step method: At,,= At/2 while E>Emax, otherwise At,,= 2*At.

Rosenbrock s implicit methodfor stiff systems:
Ove X, =XH(X,. )" Aty ormal di e e RN O e dinburgh ZINRIA



LTL(R) Trace-based Model Checking Algo

Input: An ODE system M given with initial conditions, an LTL(R) formula ¢
Hypothesis: the formula can be checked over a finite period of time [0, T]

Output: whether @is true in M

35 Francois Fages - Tutorial ICSB'10 Edinburgh Wl NRIA



LTL(R) Trace-based Model Checking Algo

Input: An ODE system M given with initial conditions, an LTL(R) formula ¢
Hypothesis: the formula can be checked over a finite period of time [0, T]

Output: whether @is true in M

Compute a trace by numerical integration fromOto T
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LTL(R) Trace-based Model Checking Algo

Input: An ODE system M given with initial conditions, an LTL(R) formula ¢
Hypothesis: the formula can be checked over a finite period of time [0, T]

Output: whether @is true in M

Compute a trace by numerical integration fromOto T
Label each state of the trace with the formula sconstraints that are true,
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LTL(R) Trace-based Model Checking Algo

Input: An ODE system M given with initial conditions, an LTL(R) formula ¢
Hypothesis: the formula can be checked over a finite period of time [0, T]

Output: whether @is true in M
Compute a trace by numerical integration fromOto T
Label each state of the trace with the formula sconstraints that are true,

lteratively label the states with the sub-formulae that are true:
Add X @, to the immediate predecessors of states labeled by @,,
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LTL(R) Trace-based Model Checking Algo

Input: An ODE system M given with initial conditions, an LTL(R) formula ¢
Hypothesis: the formula can be checked over a finite period of time [0, T]

Output: whether @is true in M

Compute a trace by numerical integration fromOto T
Label each state of the trace with the formula sconstraints that are true,
lteratively label the states with the sub-formulae that are true:

Add X @, to the immediate predecessors of states labeled by @,,

Add @, U @, to the predecessors of states labelled by @, while they satisfy @,,
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LTL(R) Trace-based Model Checking Algo

Input: An ODE system M given with initial conditions, an LTL(R) formula ¢
Hypothesis: the formula can be checked over a finite period of time [0, T]

Output: whether @is true in M

Compute a trace by numerical integration fromOto T
Label each state of the trace with the formula sconstraints that are true,
lteratively label the states with the sub-formulae that are true:

Add X @, to the immediate predecessors of states labeled by @,,

Add @, U @, to the predecessors of states labelled by @, while they satisfy @,

Add @, W @, to the states labelled by @, @,, to the last state if it is labelled by
@,, and to the predecessors of states labelled by @, W @, while they satisfy @,
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LTL(R) Trace-based Model Checking Algo

Input: An ODE system M given with initial conditions, an LTL(R) formula ¢
Hypothesis: the formula can be checked over a finite period of time [0, T]

Output: whether @is true in M

Compute a trace by numerical integration fromOto T
Label each state of the trace with the formula sconstraints that are true,
lteratively label the states with the sub-formulae that are true:

Add X @, to the immediate predecessors of states labeled by @,,

Add @, U @, to the predecessors of states labelled by @, while they satisfy @,,

Add @, W @, to the states labelled by @, @,, to the last state if it is labelled by
@,, and to the predecessors of states labelled by @, W @, while they satisfy @,

Return true if the initial state is labelled by ¢, and false otherwise
41 Francgois Fages - Tutorial ICSB'10 Edinburgh W[ NRIA



Nalve Parameter Search Algorithm

Input: an ODE model M(p) with n parameters p in range [pmin,pmax],
an LTL(R) specification @
Output: parameter values v such that M(v) [= @
or fail if no such values

42 Francois Fages - Tutorial ICSB'10 Edinburgh Wl NRIA



Nalve Parameter Search Algorithm

Input: an ODE model M(p) with n parameters p in range [pmin,pmax],
an LTL(R) specification @
Output: parameter values v such that M(v) [= @
or fail if no such values

6. Scan the parameter value space [pmin,pmax]™*n with a fixed step
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Nalve Parameter Search Algorithm

Input: an ODE model M(p) with n parameters p in range [pmin,pmax],
an LTL(R) specification @
Output: parameter values v such that M(v) [= @
or fail if no such values

Scan the parameter value space [pmin,pmax]™n with a fixed step
Test whether M(v) |= @ by trace-based model checking
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Nalve Parameter Search Algorithm

Input: an ODE model M(p) with n parameters p in range [pmin,pmax],
an LTL(R) specification @
Output: parameter values v such that M(v) [= @
or fail if no such values

Scan the parameter value space [pmin,pmax]™n with a fixed step

Test whether M(v) |= @ by trace-based model checking
Return the first value set v which satisfies @
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Nalve Parameter Search Algorithm

Input: an ODE model M(p) with n parameters p in range [pmin,pmax],
an LTL(R) specification @
Output: parameter values v such that M(v) [= @
or fail if no such values

Scan the parameter value space [pmin,pmax]™n with a fixed step
Test whether M(v) |= @ by trace-based model checking
Return the first value set v which satisfies @

Exponential complexity in O(s”n) where s is the maximum number of tried
values in the range of n parameters

Gradient-based methods need a satisfaction degree for LTL(R) formulae&
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Cell Cycle Control Model ryson o1

k1 for _=>Cyclin.
k2*[Cyclin] for Cyclin=>_.
k3*[Cyclin]*[Cdc2~{p1}] for Cyclin+Cdc2~{p1}=>Cdc2~{p1}-Cyclin~{pl}.

k4p*[Cdc2~{p1}-Cyclin~{p1}] for Cdc2~{p1}-Cyclin~{p1}=>Cdc2-Cyclin~{p1}.

k4*[Cdc2-Cyclin~{p1}]*2*[Cdc2~{p1}-Cyclin~{p1}] for
Cdc2~{p1}-Cyclin~{p1}=[Cdc2-Cyclin~{p1}]=>Cdc2-Cyclin~{p1}.

k5*[Cdc2-Cyclin~{p1}] for Cdc2-Cyclin~{p1}=>Cdc2~{p1}-Cyclin~{p1}.

k6*[Cdc2-Cyclin~{p1}] for Cdc2-Cyclin~{p1}=>Cdc2+Cyclin~{p1}.

k7*[Cyclin~{p1}] for Cyclin~{pl}=> .

k8*[Cdc2] for Cdc2=>Cdc2~{p1l}.

k9*[Cdc2~{p1}] for Cdc2~{p1}=>Cdc2.

parameter(k1,0.015). parameter(k2,0.015). parameter(k3,200).

parameter(k4p,0.018). parameter(k4,180). parameter(k5,0).

parameter(k6,1). parameter(k7,0.6). parameter(k8,100).parameter(k9,100).

present(Cdc2,1).
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Learning Parameters from Temporal Properties

biocham: learn_parameter([k3,k4],[(0,200),(0,200)],20,
oscil(Cdc2-Cyclin~{p1},3),150).
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Learning Parameters from Temporal Properties

biocham: learn_parameter([k3,k4],[(0,200),(0,200)],20,
oscil(Cdc2-Cvclin~{p1}.3).150).

Cdc2

Cyclin™~{pl}
Codcg™{pli-Cyclin™{plk
CdcE-Cyclin™{pl}

First values found :
parameter(k3,10).
parameter(k4,70).

@.43 -

Cdo2™~{pl}

a.4

B335

8.3

B.E23 |
8.2
B.13 -
B.1

B.83

B | 1 1 1 1 1
a ca 48 1] t=1t] loa 12a 14@
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Learning Parameters from Temporal Properties

biocham: learn_parameter([k3,k4],[(0,200),(0,200)],20,
oscil(Cdc2-Cyclin~{p1},3) & F([Cdc2-Cyclin~{p1}]>0.15), 150).

First values found :
parameter(k3,10).
parameter(k4,120).

50

Coc
—— Cyclin “{plk
Cdoc2™{pli-Cyclin™{pl:
— Cdoc2-Cyclin™{pl}:
Cdoc2™i{pll

8,83

.4
B.35 -
.2
a.a23 -
a.2
B.135
8.1
-]
!

h i -

I i i

a == 48 1= =1
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Learning Parameters from Temporal Properties

biocham: learn_parameter([k3,k4],[(0,200),(0,200)],20,
period(Cdc2-Cyclin~{p1},35), 150).

First values found:

parameter(kS’ 10). B.43 : E::E:f::il nnnnnn
parameter(k4,280). -
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Coupling Cell and Circadian Cycles
— through Weel

; , I
= (TS
& i 4
ha ! !
. Cdc25P
e

A\ 4

Cdc25 — .

=

Cell cycle = Circadian
cycle

Leloup and Goldbeter (1949)

BMALI1/CLOCK

1 1
| 1
A4

PER/CRY

[L. Calzone, S. Soliman 2006]
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B Biocham

File Edit Run “iew Help
rParameters -~ m
s o
iz ~ Cose
karnpt |  leetm
== o
3.5

oo
Kineem 3.0
s
. — I
rInitial Concentrations -~ ‘5
R
IE 0,133, 0,860
Wweelm | 141190132 | | | fcommand: |
AP iocham: s
PP iochsam: hide molecules (APC) .
MC jhiocham: plot.
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Condition of Entrainment in Period
on Weel/Cdc25

entrainmnent linit +
f/’2-44332*3+2-33?1

11

+

18

kanpf
“

entrainment

a.5 i 1.5 2 2.5 3 3.5
kinpf

Entrainment in period constraint expressed in LTL with the period formula
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Overview of the Tutorial

Introduction

Transposing programming concepts to the analysis of living processes
Rule-based modeling of biochemical systems
" Syntax: molecules, reactions, regulations, SBML/SBGN Biocham notations
Semantics: Boolean, Differential and Stochastic interpretations of reactions
Static analyses: consistency, influence graph circuits, protein functions,&
Examples in cell signaling, gene expression, virus infection, cell cycle
Temporal Logic based formalization of biological properties
Qualitative model-checking in propositional Computation Tree Logic CTL
Quantitative model-checking in Linear Time Logic LTL(R)
Parameter search in high dimension w.r.t. LTL(R) specifications
Robustness and sensitivity analyses w.r.t. LTL(R) specifications
Conclusion
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