
François Fages ­ Tutorial ICSB'10 Edinburgh1

Overview of the Tutorial

1. Introduction

" Transposing programming concepts to the analysis of living processes

2. Rule-based modeling of biochemical systems

" Syntax: molecules, reactions, regulations, SBML/SBGN Biocham notations

" Semantics: Boolean, Differential and Stochastic interpretations of reactions

" Static analyses: consistency, influence graph circuits, protein functions,&

" Examples in cell signaling, gene expression, virus infection, cell cycle

3. Temporal Logic based formalization of biological properties

" Qualitative model-checking in propositional Computation Tree Logic CTL

" Quantitative model-checking in Linear Time Logic LTL(R)

" Parameter search in high dimension w.r.t. LTL(R) specifications

" Robustness and sensitivity analyses w.r.t. LTL(R) specifications

4. Conclusion

François Fages ­ Tutorial ICSB'10 Edinburgh2

Cell Cycle Control by Cyclins: G1SG2M

G1: CdK4-CycD S: Cdk2-CycA G2,M: Cdk1-CycA
 Cdk6-CycD Cdk1-CycB (MPF)

 Cdk2-CycE

Sir Paul Nurse
Nobel prize 2001

François Fages ­ Tutorial ICSB'10 Edinburgh3

François Fages ­ Tutorial ICSB'10 Edinburgh4

Mammalian Cell Cycle Control Map [Kohn 99]

François Fages ­ Tutorial ICSB'10 Edinburgh5

Kohn� s map detail for Cdk2

Complexation with CycA and CycE

Biocham Rule Patterns:

cdk2~$P + cycA­$C => cdk2~$P­cycA­$C
 where $C in {_,cks1} .
cdk2~$P + cycE~$Q­$C => cdk2~$P­cycE~$Q­$C
 where $C in {_,cks1} .
p57 + cdk2~$P­cycA­$C => p57­cdk2~$P­cycA­$C
 where $C in {_, cks1}.
cycE­$C =[cdk2~{p2}­cycE­$S]=> cycE~{T380}­$C
 where $S in {_, cks1} and $C in {_, cdk2~?, cdk2~?­cks1}
Total: 147 rule patterns 2733 expanded rules [Chiaverini Danos 03]

François Fages ­ Tutorial ICSB'10 Edinburgh6

Computation Tree Logic CTL
Temporal logics extend classical logic with modal operators for time & non-det.

Introduced for program verification by [Pnueli 77]

Time

Non-determinism E, A

F,G,U EFφ

AGφ

A (ϕ1 U ϕ2)E (ϕ1 U ϕ2)U
until

AG()

safety

EG(ϕ)

¬ AF(¬ ϕ)

G
globally

AF(ϕ)

liveness

EF(ϕ)

¬AG(¬ ϕ)

F
finally

AX(ϕ)EX(ϕ)X
next time

A
always

E
exists

 Non-det.

Time

François Fages ­ Tutorial ICSB'10 Edinburgh7

Biological Properties formalized in CTL
(1/3)

About reachability:

" Can the cell produce some protein P? reachable(P)==EF(P)

" Can the cell produce P, Q and not R?

François Fages ­ Tutorial ICSB'10 Edinburgh8

Biological Properties formalized in CTL
(1/3)

About reachability:

" Can the cell produce some protein P? reachable(P)==EF(P)

" Can the cell produce P, Q and not R? reachable(P^Q^¬R)

" Can the cell always produce P?

François Fages ­ Tutorial ICSB'10 Edinburgh9

Biological Properties formalized in CTL
(1/3)

About reachability:

" Can the cell produce some protein P? reachable(P)==EF(P)

" Can the cell produce P, Q and not R? reachable(P^Q^¬R)

" Can the cell always produce P? AG(reachable(P))

About pathways:

" Can the cell reach a set s of (partially described) states while passing by
another set of states s2?

François Fages ­ Tutorial ICSB'10 Edinburgh10

Biological Properties formalized in CTL
(1/3)

About reachability:

" Can the cell produce some protein P? reachable(P)==EF(P)

" Can the cell produce P, Q and not R? reachable(P^Q^¬R)

" Can the cell always produce P? AG(reachable(P))

About pathways:

" Can the cell reach a set s of (partially described) states while passing by
another set of states s2? EF(s2^EFs)

" Is it possible to produce P without Q ?

François Fages ­ Tutorial ICSB'10 Edinburgh11

Biological Properties formalized in CTL
(1/3)

About reachability:

" Can the cell produce some protein P? reachable(P)==EF(P)

" Can the cell produce P, Q and not R? reachable(P^Q^¬R)

" Can the cell always produce P? AG(reachable(P))

About pathways:

" Can the cell reach a set s of (partially described) states while passing by
another set of states s2? EF(s2^EFs)

" Is it possible to produce P without Q ? E(¬Q U P)
" Is state s2 a necessary checkpoint for reaching state s?

 checkpoint(s2,s)== ¬E(¬s2 U s)

François Fages ­ Tutorial ICSB'10 Edinburgh12

Biological Properties formalized in CTL
(1/3)

About reachability:

" Can the cell produce some protein P? reachable(P)==EF(P)

" Can the cell produce P, Q and not R? reachable(P^Q^¬R)

" Can the cell always produce P? AG(reachable(P))

About pathways:

" Can the cell reach a set s of (partially described) states while passing by
another set of states s2? EF(s2^EFs)

" Is it possible to produce P without Q ? E(¬Q U P)
" Is state s2 a necessary checkpoint for reaching state s?

 checkpoint(s2,s)== ¬E(¬s2 U s)

" Is s2 always a checkpoint for s? AG(¬s ­> checkpoint(s2,s))

François Fages ­ Tutorial ICSB'10 Edinburgh13

Biological Properties formalized in CTL
(2/3)

About stability:

" Is state s a stable state? stable(s)== AG(s)

François Fages ­ Tutorial ICSB'10 Edinburgh14

Biological Properties formalized in CTL
(2/3)

About stability:

" Is state s a stable state? stable(s)== AG(s)
" Is s a steady state (with possibility of escaping) ? steady(s)==EG(s)

" Can the cell reach a stable state s?

François Fages ­ Tutorial ICSB'10 Edinburgh15

Biological Properties formalized in CTL
(2/3)

About stability:

" Is state s a stable state? stable(s)== AG(s)
" Is s a steady state (with possibility of escaping) ? steady(s)==EG(s)

" Can the cell reach a stable state s? EF(stable(s))
alternance of path quantifiers EFAG φ,
not in Linear Time Logic LTL (fragment without path quantifiers)

FG φ is not in LTL

" Must the cell reach a stable state s?

François Fages ­ Tutorial ICSB'10 Edinburgh16

Biological Properties formalized in CTL
(2/3)

About stability:

" Is state s a stable state? stable(s)== AG(s)
" Is s a steady state (with possibility of escaping) ? steady(s)==EG(s)

" Can the cell reach a stable state s? EF(stable(s))
alternance of path quantifiers EFAG φ,
not in Linear Time Logic LTL (fragment without path quantifiers)

FG φ is not in LTL

" Must the cell reach a stable state s? AG(stable(s))

" What are the stable states?

François Fages ­ Tutorial ICSB'10 Edinburgh17

Biological Properties formalized in CTL
(2/3)

About stability:

" Is a set of states s a stable state? stable(s)== AG(s)
" Is s a steady state (with possibility of escaping) ? steady(s)==EG(s)

" Can the cell reach a stable state s? EF(stable(s))
alternance of path quantifiers EFAG φ,
not in Linear Time Logic LTL (fragment without path quantifiers)

FG φ is not in LTL

" Must the cell reach a stable state s? AG(stable(s))

" What are the stable states? Not expressible in CTL.
needs to combine CTL with search [Chan 00, Calzone-Chabrier-Fages-Soliman 05,

Fages-Rizk 07 09].

François Fages ­ Tutorial ICSB'10 Edinburgh18

Biological Properties formalized in CTL
(3/3)

About durations:

" How long does it take for a molecule to become activated?

" In a given time, how many Cyclins A can be accumulated?

" What is the duration of a given cell cycle� s phase?

François Fages ­ Tutorial ICSB'10 Edinburgh19

Biological Properties formalized in CTL
(3/3)

About durations:

" How long does it take for a molecule to become activated?

" In a given time, how many Cyclins A can be accumulated?

" What is the duration of a given cell cycle� s phase?

 CTL operators abstract from durations. Time intervals can be modeled in FOL by
adding numerical constraints for start times and durations.

François Fages ­ Tutorial ICSB'10 Edinburgh20

Biological Properties formalized in CTL
(3/3)

About durations:

" How long does it take for a molecule to become activated?

" In a given time, how many Cyclins A can be accumulated?

" What is the duration of a given cell cycle� s phase?

 CTL operators abstract from durations. Time intervals can be modeled in FOL by
adding numerical constraints for start times and durations.

About oscillations:

" Can the system exhibit a cyclic behavior w.r.t. the presence of P ?
oscil(P)== EG((F ¬P) ^ (F P))

 temporal operators not preceded by a path operator: CTL* formula

 approximation in CTL: oscil(P)== EG((EF ¬P) ^ (EF P))

François Fages ­ Tutorial ICSB'10 Edinburgh21

Basic CTL Model-Checking Algorithm

Model Checking is an algorithm for computing, in a given finite Kripke structure K
the set of states satisfying a CTL formula:

{s∈S : s |= φ }.

François Fages ­ Tutorial ICSB'10 Edinburgh22

Basic CTL Model-Checking Algorithm

Model Checking is an algorithm for computing, in a given finite Kripke structure K
the set of states satisfying a CTL formula:

{s∈S : s |= φ }.

Represent K as a (finite) graph and iteratively label the nodes with the subformulas
of φ which are true in that node.

François Fages ­ Tutorial ICSB'10 Edinburgh23

Basic CTL Model-Checking Algorithm

Model Checking is an algorithm for computing, in a given finite Kripke structure K
the set of states satisfying a CTL formula:

{s∈S : s |= φ }.

Represent K as a (finite) graph and iteratively label the nodes with the subformulas
of φ which are true in that node.

" Add φ to the states satisfying φ

François Fages ­ Tutorial ICSB'10 Edinburgh24

Basic CTL Model-Checking Algorithm

Model Checking is an algorithm for computing, in a given finite Kripke structure K
the set of states satisfying a CTL formula:

{s∈S : s |= φ }.

Represent K as a (finite) graph and iteratively label the nodes with the subformulas
of φ which are true in that node.

" Add φ to the states satisfying φ
" Add EF φ (EX φ) to the (immediate) predecessors of states labeled by φ

François Fages ­ Tutorial ICSB'10 Edinburgh25

Basic CTL Model-Checking Algorithm

Model Checking is an algorithm for computing, in a given finite Kripke structure K
the set of states satisfying a CTL formula:

{s∈S : s |= φ }.

Represent K as a (finite) graph and iteratively label the nodes with the subformulas
of φ which are true in that node.

" Add φ to the states satisfying φ
" Add EF φ (EX φ) to the (immediate) predecessors of states labeled by φ
" Add E(φ1 U φ2) to the predecessor states of φ2 while they satisfy φ1

François Fages ­ Tutorial ICSB'10 Edinburgh26

Basic CTL Model-Checking Algorithm

Model Checking is an algorithm for computing, in a given finite Kripke structure K
the set of states satisfying a CTL formula:

{s∈S : s |= φ }.

Represent K as a (finite) graph and iteratively label the nodes with the subformulas
of φ which are true in that node.

" Add φ to the states satisfying φ
" Add EF φ (EX φ) to the (immediate) predecessors of states labeled by φ
" Add E(φ1 U φ2) to the predecessor states of φ2 while they satisfy φ1
" Add EG φ to the states for which there exists a path leading to a non trivial

strongly connected component of the subgraph of states satisfying φ.

François Fages ­ Tutorial ICSB'10 Edinburgh27

Basic CTL Model-Checking Algorithm

Model Checking is an algorithm for computing, in a given finite Kripke structure K
the set of states satisfying a CTL formula:

{s∈S : s |= φ }.

Represent K as a (finite) graph and iteratively label the nodes with the subformulas
of φ which are true in that node.

" Add φ to the states satisfying φ
" Add EF φ (EX φ) to the (immediate) predecessors of states labeled by φ
" Add E(φ1 U φ2) to the predecessor states of φ2 while they satisfy φ1
" Add EG φ to the states for which there exists a path leading to a non trivial

strongly connected component of the subgraph of states satisfying φ.

Model-checking algorithm in O(|K|*|φ|).

Complexity: CTL model-checking is Ptime-complete,

François Fages ­ Tutorial ICSB'10 Edinburgh28

Symbolic CTL Model-Checking Algorithm

Represent finite Kripke structures using Boolean constraints for

" sets of states as a boolean constraint c(V)

" the transition relation as a boolean constraint r(V,V�)

François Fages ­ Tutorial ICSB'10 Edinburgh29

Symbolic CTL Model-Checking Algorithm

Represent finite Kripke structures using Boolean constraints for

" sets of states as a boolean constraint c(V)

" the transition relation as a boolean constraint r(V,V�)

Ordered Binary Decision Diagrams OBDD [Bryant 85] provide canonical forms for
Boolean formulas (decides SAT in NP, and equivalence TAUT in co-NP)

(x⋁¬y)⋀(y⋁¬z)⋀(z⋁¬x)

and

(x⋁¬z)⋀(z⋁¬y)⋀(y⋁¬x)

are equivalent, they

have the same BDD(x,y,z)

François Fages ­ Tutorial ICSB'10 Edinburgh30

Mammalian Cell Cycle Control Map [Kohn 99]

François Fages ­ Tutorial ICSB'10 Edinburgh31

Mammalian Cell Cycle Control Benchmark
147-2733 rules, 165 proteins and genes, 500 variables, 2500 states.
BIOCHAM NuSMV model-checker time in seconds: [Chabrier Fages 03 CMSB]

31.8sEG ((EF ¬ CycA) & (EF CycA))Oscillations CycA

6sEG ((EF ¬ CycB) & (EF CycB)) false !Osciallations CycB

2.2s¬ EF (¬ Cdc25~{Nterm}
 U Cdk1~{Thr161}-CycB)

Checkpoint

for mitosis complex

1.7sEF PCNA-CycDReachability G1

1.9sEF CycDReachability G1

2sEF CycEReachability G1

29scompiling

Time: Query:Initial state G2

François Fages ­ Tutorial ICSB'10 Edinburgh32

Linear Time Logic with Constraints LTL(R)

Constraints over concentrations and derivatives as formulae over the reals:

� [M] > 0.2

� [M]+[P] > [Q]

� d([M])/dt < 0

LTL(R) formulae

� minimum threshold value reached: F([M]>0.2)

� minimum threshold value reached and maintained: FG([M]>0.2)

� local maximum V: F ([M]<V & F ([M]=V & F ([M]<V))

� F ([M]>2 & F (d([M])/dt<0 & F ([M]<2 & d([M])/dt>0 & F(d([M])/dt<0))))

� oscil(M,n) defined as at least n alternances of the sign of the derivative

François Fages ­ Tutorial ICSB'10 Edinburgh33

LTL(R) Constraints with Real-time Variable

LTL(R) formulae with real-time variable

� Threshold value with a minimum delay

F([M]>0.2) & G(Time<5 ⇒[M]<0.2)

� Numerical data time series (for curve fitting)

F(Time=1 & [M]=0.05 & F(Time=2 & [M]=0.12& F(Time=3 & [M]=0.25)))

� Period constraint

Period(A,75)= ∃ t ∃v F(Time = t & [A] = v & d([A])/dt > 0 & X(d([A])/dt < 0)

 & F(Time = t + 75 & [A] = v & d([A])/dt > 0 & X(d([A])/dt < 0)))

François Fages ­ Tutorial ICSB'10 Edinburgh34

Numerical Integration of ODE Models
dX/dt = f(X).

Initial conditions X0

Idea: discretize time t0, t1=t0+Δt0, t2=t1+Δt1, &

and compute a numerical trace (t0,X0,dX0/dt), (t1,X1,dX1/dt), & , (tn,Xn,dXn/dt)

Euler� s method: ti+1=ti+ Δt Xi+1=Xi+f(Xi)*Δt

error estimation E(Xi+1)=|f(Xi)-f(Xi+1)|*Δt

Runge-Kutta� s method: intermediate computations at Δt/2

adaptive step method: Δti+1= Δti/2 while E>Emax, otherwise Δti+1= 2*Δti

Rosenbrock� s implicit method for stiff systems:

 solve Xi+1=Xi+f(Xi+1)*Δt by formal differentiation

François Fages ­ Tutorial ICSB'10 Edinburgh35

LTL(R) Trace-based Model Checking Algo

Input: An ODE system M given with initial conditions, an LTL(R) formula φ
Hypothesis: the formula can be checked over a finite period of time [0,T]

Output: whether φ is true in M

François Fages ­ Tutorial ICSB'10 Edinburgh36

LTL(R) Trace-based Model Checking Algo

Input: An ODE system M given with initial conditions, an LTL(R) formula φ
Hypothesis: the formula can be checked over a finite period of time [0,T]

Output: whether φ is true in M

" Compute a trace by numerical integration from 0 to T

François Fages ­ Tutorial ICSB'10 Edinburgh37

LTL(R) Trace-based Model Checking Algo

Input: An ODE system M given with initial conditions, an LTL(R) formula φ
Hypothesis: the formula can be checked over a finite period of time [0,T]

Output: whether φ is true in M

" Compute a trace by numerical integration from 0 to T

� Label each state of the trace with the formula� s constraints that are true,

François Fages ­ Tutorial ICSB'10 Edinburgh38

LTL(R) Trace-based Model Checking Algo

Input: An ODE system M given with initial conditions, an LTL(R) formula φ
Hypothesis: the formula can be checked over a finite period of time [0,T]

Output: whether φ is true in M

" Compute a trace by numerical integration from 0 to T

� Label each state of the trace with the formula� s constraints that are true,

" Iteratively label the states with the sub-formulae that are true:

� Add X φ1 to the immediate predecessors of states labeled by φ1,

François Fages ­ Tutorial ICSB'10 Edinburgh39

LTL(R) Trace-based Model Checking Algo

Input: An ODE system M given with initial conditions, an LTL(R) formula φ
Hypothesis: the formula can be checked over a finite period of time [0,T]

Output: whether φ is true in M

" Compute a trace by numerical integration from 0 to T

� Label each state of the trace with the formula� s constraints that are true,

" Iteratively label the states with the sub-formulae that are true:

� Add X φ1 to the immediate predecessors of states labeled by φ1,

� Add φ1 U φ2 to the predecessors of states labelled by φ2 while they satisfy φ1,

François Fages ­ Tutorial ICSB'10 Edinburgh40

LTL(R) Trace-based Model Checking Algo

Input: An ODE system M given with initial conditions, an LTL(R) formula φ
Hypothesis: the formula can be checked over a finite period of time [0,T]

Output: whether φ is true in M

" Compute a trace by numerical integration from 0 to T

� Label each state of the trace with the formula� s constraints that are true,

" Iteratively label the states with the sub-formulae that are true:

� Add X φ1 to the immediate predecessors of states labeled by φ1,

� Add φ1 U φ2 to the predecessors of states labelled by φ2 while they satisfy φ1,

� Add φ1 W φ2 to the states labelled by φ1∧ φ2, to the last state if it is labelled by
φ1, and to the predecessors of states labelled by φ1 W φ2 while they satisfy φ1,

François Fages ­ Tutorial ICSB'10 Edinburgh41

LTL(R) Trace-based Model Checking Algo

Input: An ODE system M given with initial conditions, an LTL(R) formula φ
Hypothesis: the formula can be checked over a finite period of time [0,T]

Output: whether φ is true in M

" Compute a trace by numerical integration from 0 to T

� Label each state of the trace with the formula� s constraints that are true,

" Iteratively label the states with the sub-formulae that are true:

� Add X φ1 to the immediate predecessors of states labeled by φ1,

� Add φ1 U φ2 to the predecessors of states labelled by φ2 while they satisfy φ1,

� Add φ1 W φ2 to the states labelled by φ1∧ φ2, to the last state if it is labelled by
φ1, and to the predecessors of states labelled by φ1 W φ2 while they satisfy φ1,

" Return true if the initial state is labelled by φ, and false otherwise

François Fages ­ Tutorial ICSB'10 Edinburgh42

Naïve Parameter Search Algorithm

Input: an ODE model M(p) with n parameters p in range [pmin,pmax],

 an LTL(R) specification φ
Output: parameter values v such that M(v) |= φ

 or fail if no such values

François Fages ­ Tutorial ICSB'10 Edinburgh43

Naïve Parameter Search Algorithm

Input: an ODE model M(p) with n parameters p in range [pmin,pmax],

 an LTL(R) specification φ
Output: parameter values v such that M(v) |= φ

 or fail if no such values

6. Scan the parameter value space [pmin,pmax]^n with a fixed step

François Fages ­ Tutorial ICSB'10 Edinburgh44

Naïve Parameter Search Algorithm

Input: an ODE model M(p) with n parameters p in range [pmin,pmax],

 an LTL(R) specification φ
Output: parameter values v such that M(v) |= φ

 or fail if no such values

" Scan the parameter value space [pmin,pmax]^n with a fixed step

" Test whether M(v) |= φ by trace-based model checking

François Fages ­ Tutorial ICSB'10 Edinburgh45

Naïve Parameter Search Algorithm

Input: an ODE model M(p) with n parameters p in range [pmin,pmax],

 an LTL(R) specification φ
Output: parameter values v such that M(v) |= φ

 or fail if no such values

" Scan the parameter value space [pmin,pmax]^n with a fixed step

" Test whether M(v) |= φ by trace-based model checking

" Return the first value set v which satisfies φ

François Fages ­ Tutorial ICSB'10 Edinburgh46

Naïve Parameter Search Algorithm

Input: an ODE model M(p) with n parameters p in range [pmin,pmax],

 an LTL(R) specification φ
Output: parameter values v such that M(v) |= φ

 or fail if no such values

" Scan the parameter value space [pmin,pmax]^n with a fixed step

" Test whether M(v) |= φ by trace-based model checking

" Return the first value set v which satisfies φ

Exponential complexity in O(s^n) where s is the maximum number of tried
values in the range of n parameters

Gradient-based methods need a satisfaction degree for LTL(R) formulae&

François Fages ­ Tutorial ICSB'10 Edinburgh47

Cell Cycle Control Model [Tyson 91]

k1 for _=>Cyclin.

k2*[Cyclin] for Cyclin=>_.

k3*[Cyclin]*[Cdc2~{p1}] for Cyclin+Cdc2~{p1}=>Cdc2~{p1}-Cyclin~{p1}.
k4p*[Cdc2~{p1}-Cyclin~{p1}] for Cdc2~{p1}-Cyclin~{p1}=>Cdc2-Cyclin~{p1}.

k4*[Cdc2-Cyclin~{p1}]^2*[Cdc2~{p1}-Cyclin~{p1}] for

 Cdc2~{p1}-Cyclin~{p1}=[Cdc2-Cyclin~{p1}]=>Cdc2-Cyclin~{p1}.

k5*[Cdc2-Cyclin~{p1}] for Cdc2-Cyclin~{p1}=>Cdc2~{p1}-Cyclin~{p1}.

k6*[Cdc2-Cyclin~{p1}] for Cdc2-Cyclin~{p1}=>Cdc2+Cyclin~{p1}.
k7*[Cyclin~{p1}] for Cyclin~{p1}=>_.

k8*[Cdc2] for Cdc2=>Cdc2~{p1}.

k9*[Cdc2~{p1}] for Cdc2~{p1}=>Cdc2.

parameter(k1,0.015). parameter(k2,0.015). parameter(k3,200).
parameter(k4p,0.018). parameter(k4,180). parameter(k5,0).

parameter(k6,1). parameter(k7,0.6). parameter(k8,100).parameter(k9,100).

present(Cdc2,1).

François Fages ­ Tutorial ICSB'10 Edinburgh48

Learning Parameters from Temporal Properties

biocham: learn_parameter([k3,k4],[(0,200),(0,200)],20,

 oscil(Cdc2-Cyclin~{p1},3),150).

François Fages ­ Tutorial ICSB'10 Edinburgh49

Learning Parameters from Temporal Properties

biocham: learn_parameter([k3,k4],[(0,200),(0,200)],20,

 oscil(Cdc2-Cyclin~{p1},3),150).

First values found :

parameter(k3,10).

parameter(k4,70).

François Fages ­ Tutorial ICSB'10 Edinburgh50

Learning Parameters from Temporal Properties

biocham: learn_parameter([k3,k4],[(0,200),(0,200)],20,

 oscil(Cdc2-Cyclin~{p1},3) & F([Cdc2-Cyclin~{p1}]>0.15), 150).

First values found :

parameter(k3,10).

parameter(k4,120).

François Fages ­ Tutorial ICSB'10 Edinburgh51

Learning Parameters from Temporal Properties

biocham: learn_parameter([k3,k4],[(0,200),(0,200)],20,

 period(Cdc2-Cyclin~{p1},35), 150).

First values found:

parameter(k3,10).

parameter(k4,280).

François Fages ­ Tutorial ICSB'10 Edinburgh52

Leloup and Goldbeter (1999)

MPF preMPF

Wee1

Wee1P

Cdc25

Cdc25P
APC

APC

....

....

........

Cell cycle

Coupling Cell and Circadian Cycles
through Wee1

BMAL1/CLOCK

PER/CRY

Circadian
cycle

Wee1 mRNA

L[L. Calzone, S. Soliman 2006]

François Fages ­ Tutorial ICSB'10 Edinburgh53

PCN

Wee1m

Wee1
MPF

BN

Cdc25

François Fages ­ Tutorial ICSB'10 Edinburgh54

entrainment
entrainment

Condition of Entrainment in Period
on Wee1/Cdc25

Entrainment in period constraint expressed in LTL with the period formula

François Fages ­ Tutorial ICSB'10 Edinburgh55

Overview of the Tutorial

1. Introduction

" Transposing programming concepts to the analysis of living processes

2. Rule-based modeling of biochemical systems

" Syntax: molecules, reactions, regulations, SBML/SBGN Biocham notations

" Semantics: Boolean, Differential and Stochastic interpretations of reactions

" Static analyses: consistency, influence graph circuits, protein functions,&

" Examples in cell signaling, gene expression, virus infection, cell cycle

3. Temporal Logic based formalization of biological properties

" Qualitative model-checking in propositional Computation Tree Logic CTL

" Quantitative model-checking in Linear Time Logic LTL(R)

" Parameter search in high dimension w.r.t. LTL(R) specifications

" Robustness and sensitivity analyses w.r.t. LTL(R) specifications

4. Conclusion

