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Overview of the Tutorial

1. Introduction

" Transposing programming concepts to the analysis of living processes

2. Rule-based modeling of biochemical systems

" Syntax: molecules, reactions, regulations, SBML/SBGN Biocham notations

" Semantics: Boolean, Differential and Stochastic interpretations of reactions

" Static analyses: consistency, influence graph circuits, protein functions,&

" Examples in cell signaling, gene expression, virus infection, cell cycle

3. Temporal Logic based formalization of biological properties

" Qualitative model-checking in propositional Computation Tree Logic CTL

" Quantitative model-checking in Linear Time Logic LTL(R) 

" Parameter search in high dimension w.r.t. LTL(R) specifications

" Robustness and sensitivity analyses w.r.t. LTL(R) specifications

4. Conclusion
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Cell Cycle Control by Cyclins: G1SG2M

G1: CdK4-CycD             S:   Cdk2-CycA             G2,M: Cdk1-CycA
       Cdk6-CycD                                                               Cdk1-CycB (MPF)

       Cdk2-CycE                                                             

Sir Paul Nurse
Nobel prize 2001
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Mammalian Cell Cycle Control Map [Kohn 99]



François Fages ­ Tutorial ICSB'10 Edinburgh5

Kohn� s map detail for Cdk2

Complexation with CycA and CycE    

                

Biocham Rule Patterns:

cdk2~$P + cycA­$C => cdk2~$P­cycA­$C
    where $C in {_,cks1} .
cdk2~$P + cycE~$Q­$C => cdk2~$P­cycE~$Q­$C
    where $C in {_,cks1} .
p57 + cdk2~$P­cycA­$C => p57­cdk2~$P­cycA­$C
    where $C in {_, cks1}.
cycE­$C =[cdk2~{p2}­cycE­$S]=> cycE~{T380}­$C
    where $S in {_, cks1} and $C in {_, cdk2~?, cdk2~?­cks1}
Total: 147 rule patterns 2733 expanded rules [Chiaverini Danos 03]
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Computation Tree Logic CTL
Temporal logics extend classical logic with modal operators for time & non-det.

Introduced for program verification by [Pnueli 77]

Time

Non-determinism E, A

F,G,U EFφ

AGφ

A (ϕ1 U ϕ2)E (ϕ1 U ϕ2)U
until

AG()

safety

EG(ϕ)

¬  AF(¬  ϕ)

G
globally

AF(ϕ)

liveness

EF(ϕ)

¬AG(¬  ϕ)

F
finally

AX(ϕ)EX(ϕ)X
next time

A
always

E
exists 

        Non-det.

Time
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Biological Properties formalized in CTL 
(1/3)

About reachability:

" Can the cell produce some protein P?  reachable(P)==EF(P) 

" Can the cell produce P, Q and not R?  
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Biological Properties formalized in CTL 
(1/3)

About reachability:

" Can the cell produce some protein P?  reachable(P)==EF(P) 

" Can the cell produce P, Q and not R?  reachable(P^Q^¬R) 

" Can the cell always produce P?  



François Fages ­ Tutorial ICSB'10 Edinburgh9

Biological Properties formalized in CTL 
(1/3)

About reachability:

" Can the cell produce some protein P?  reachable(P)==EF(P) 

" Can the cell produce P, Q and not R?  reachable(P^Q^¬R) 

" Can the cell always produce P?  AG(reachable(P)) 

About pathways:

" Can the cell reach a set s of (partially described)  states while passing by 
another set of states s2?      
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Biological Properties formalized in CTL 
(1/3)

About reachability:

" Can the cell produce some protein P?  reachable(P)==EF(P) 

" Can the cell produce P, Q and not R?  reachable(P^Q^¬R) 

" Can the cell always produce P?  AG(reachable(P)) 

About pathways:

" Can the cell reach a set s of (partially described)  states while passing by 
another set of states s2?      EF(s2^EFs)

" Is it possible to produce P without Q ? 
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Biological Properties formalized in CTL 
(1/3)

About reachability:

" Can the cell produce some protein P?  reachable(P)==EF(P) 

" Can the cell produce P, Q and not R?  reachable(P^Q^¬R) 

" Can the cell always produce P?  AG(reachable(P)) 

About pathways:

" Can the cell reach a set s of (partially described)  states while passing by 
another set of states s2?      EF(s2^EFs)

" Is it possible to produce P without Q ? E(¬Q U P)
" Is state s2 a necessary checkpoint for reaching state s? 

  checkpoint(s2,s)== ¬E(¬s2 U s)
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Biological Properties formalized in CTL 
(1/3)

About reachability:

" Can the cell produce some protein P?  reachable(P)==EF(P) 

" Can the cell produce P, Q and not R?  reachable(P^Q^¬R) 

" Can the cell always produce P?  AG(reachable(P)) 

About pathways:

" Can the cell reach a set s of (partially described)  states while passing by 
another set of states s2?      EF(s2^EFs)

" Is it possible to produce P without Q ? E(¬Q U P)
" Is state s2 a necessary checkpoint for reaching state s? 

  checkpoint(s2,s)== ¬E(¬s2 U s)

" Is s2 always a checkpoint for s? AG(¬s ­> checkpoint(s2,s))
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Biological Properties formalized in CTL 
(2/3)

About stability:

" Is state s a stable state? stable(s)== AG(s)
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Biological Properties formalized in CTL 
(2/3)

About stability:

" Is state s a stable state? stable(s)== AG(s)
" Is s a steady state (with possibility of escaping) ? steady(s)==EG(s) 

" Can the cell reach a stable state s? 
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Biological Properties formalized in CTL 
(2/3)

About stability:

" Is state s a stable state? stable(s)== AG(s)
" Is s a steady state (with possibility of escaping) ? steady(s)==EG(s) 

" Can the cell reach a stable state s? EF(stable(s)) 
alternance of path quantifiers EFAG φ,
not in Linear Time Logic LTL (fragment without path quantifiers)

FG φ is not in LTL

" Must the cell reach a stable state s? 



François Fages ­ Tutorial ICSB'10 Edinburgh16

Biological Properties formalized in CTL 
(2/3)

About stability:

" Is state s a stable state? stable(s)== AG(s)
" Is s a steady state (with possibility of escaping) ? steady(s)==EG(s) 

" Can the cell reach a stable state s? EF(stable(s)) 
alternance of path quantifiers EFAG φ,
not in Linear Time Logic LTL (fragment without path quantifiers)

FG φ is not in LTL

" Must the cell reach a stable state s? AG(stable(s))

" What are the stable states? 
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Biological Properties formalized in CTL 
(2/3)

About stability:

" Is a set of states s a stable state? stable(s)== AG(s)
" Is s a steady state (with possibility of escaping) ? steady(s)==EG(s) 

" Can the cell reach a stable state s? EF(stable(s)) 
alternance of path quantifiers EFAG φ,
not in Linear Time Logic LTL (fragment without path quantifiers)

FG φ is not in LTL

" Must the cell reach a stable state s? AG(stable(s))

" What are the stable states? Not expressible in CTL. 
needs to combine CTL with search [Chan 00, Calzone-Chabrier-Fages-Soliman 05, 

Fages-Rizk 07 09].
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Biological Properties formalized in CTL 
(3/3)

About durations: 

" How long does it take for a molecule to become activated?

" In a given time, how many Cyclins A can be accumulated?

" What is the duration of a given cell cycle� s phase?
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Biological Properties formalized in CTL 
(3/3)

About durations: 

" How long does it take for a molecule to become activated?

" In a given time, how many Cyclins A can be accumulated?

" What is the duration of a given cell cycle� s phase?

   CTL operators abstract from durations. Time intervals can be modeled in FOL by 
adding numerical constraints for start times and durations.



François Fages ­ Tutorial ICSB'10 Edinburgh20

Biological Properties formalized in CTL 
(3/3)

About durations: 

" How long does it take for a molecule to become activated?

" In a given time, how many Cyclins A can be accumulated?

" What is the duration of a given cell cycle� s phase?

   CTL operators abstract from durations. Time intervals can be modeled in FOL by 
adding numerical constraints for start times and durations.

About oscillations:

" Can the system exhibit a cyclic behavior w.r.t. the presence of P ? 
oscil(P)== EG((F ¬P) ^ (F P))

    temporal operators not preceded by a path operator: CTL* formula

  approximation in CTL:  oscil(P)== EG((EF ¬P) ^ (EF P))
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Basic CTL Model-Checking Algorithm

Model Checking is an algorithm for computing, in a given finite Kripke structure K 
the set of states satisfying a CTL formula: 

{s∈S : s |= φ }.
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Basic CTL Model-Checking Algorithm

Model Checking is an algorithm for computing, in a given finite Kripke structure K 
the set of states satisfying a CTL formula: 

{s∈S : s |= φ }.

Represent K as a (finite) graph and iteratively label the nodes with the subformulas 
of φ which are true in that node.
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Basic CTL Model-Checking Algorithm

Model Checking is an algorithm for computing, in a given finite Kripke structure K 
the set of states satisfying a CTL formula: 

{s∈S : s |= φ }.

Represent K as a (finite) graph and iteratively label the nodes with the subformulas 
of φ which are true in that node.

" Add φ to the states satisfying φ



François Fages ­ Tutorial ICSB'10 Edinburgh24

Basic CTL Model-Checking Algorithm

Model Checking is an algorithm for computing, in a given finite Kripke structure K 
the set of states satisfying a CTL formula: 

{s∈S : s |= φ }.

Represent K as a (finite) graph and iteratively label the nodes with the subformulas 
of φ which are true in that node.

" Add φ to the states satisfying φ
" Add EF φ (EX φ) to the (immediate) predecessors of states labeled by φ
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Basic CTL Model-Checking Algorithm

Model Checking is an algorithm for computing, in a given finite Kripke structure K 
the set of states satisfying a CTL formula: 

{s∈S : s |= φ }.

Represent K as a (finite) graph and iteratively label the nodes with the subformulas 
of φ which are true in that node.

" Add φ to the states satisfying φ
" Add EF φ (EX φ) to the (immediate) predecessors of states labeled by φ
" Add E(φ1 U φ2 ) to the predecessor states of φ2 while they satisfy φ1
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Basic CTL Model-Checking Algorithm

Model Checking is an algorithm for computing, in a given finite Kripke structure K 
the set of states satisfying a CTL formula: 

{s∈S : s |= φ }.

Represent K as a (finite) graph and iteratively label the nodes with the subformulas 
of φ which are true in that node.

" Add φ to the states satisfying φ
" Add EF φ (EX φ) to the (immediate) predecessors of states labeled by φ
" Add E(φ1 U φ2 ) to the predecessor states of φ2 while they satisfy φ1
" Add EG φ  to the states for which there exists a path leading to a non trivial 

strongly connected component of the subgraph of states satisfying φ.



François Fages ­ Tutorial ICSB'10 Edinburgh27

Basic CTL Model-Checking Algorithm

Model Checking is an algorithm for computing, in a given finite Kripke structure K 
the set of states satisfying a CTL formula: 

{s∈S : s |= φ }.

Represent K as a (finite) graph and iteratively label the nodes with the subformulas 
of φ which are true in that node.

" Add φ to the states satisfying φ
" Add EF φ (EX φ) to the (immediate) predecessors of states labeled by φ
" Add E(φ1 U φ2 ) to the predecessor states of φ2 while they satisfy φ1
" Add EG φ  to the states for which there exists a path leading to a non trivial 

strongly connected component of the subgraph of states satisfying φ.

Model-checking algorithm in O(|K|*|φ|).

Complexity: CTL model-checking is Ptime-complete, 
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Symbolic CTL Model-Checking Algorithm

Represent finite Kripke structures using Boolean constraints for

" sets of states as a boolean constraint c(V)

" the transition relation as a boolean constraint r(V,V� )
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Symbolic CTL Model-Checking Algorithm

Represent finite Kripke structures using Boolean constraints for

" sets of states as a boolean constraint c(V)

" the transition relation as a boolean constraint r(V,V� )

Ordered Binary Decision Diagrams OBDD [Bryant 85] provide canonical forms for 
Boolean formulas (decides SAT in NP, and equivalence TAUT in co-NP)

(x⋁¬y)⋀(y⋁¬z)⋀(z⋁¬x) 

and 

(x⋁¬z)⋀(z⋁¬y)⋀(y⋁¬x) 

are equivalent, they

have the same BDD(x,y,z)                               
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Mammalian Cell Cycle Control Map [Kohn 99]
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Mammalian Cell Cycle Control Benchmark
147-2733 rules, 165 proteins and genes, 500 variables, 2500 states.
BIOCHAM NuSMV model-checker time in seconds: [Chabrier Fages 03 CMSB]

31.8sEG ( (EF ¬  CycA) & (EF CycA))Oscillations CycA

6sEG ( (EF ¬  CycB) & (EF CycB))  false !Osciallations CycB

2.2s¬  EF (¬  Cdc25~{Nterm} 
          U Cdk1~{Thr161}-CycB)

Checkpoint

for mitosis complex

1.7sEF PCNA-CycDReachability G1

1.9sEF CycDReachability G1

2sEF CycEReachability G1

29scompiling

Time: Query:Initial state G2
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Linear Time Logic with Constraints LTL(R)

Constraints over concentrations and derivatives as formulae over the reals:

� [M] > 0.2

� [M]+[P] > [Q]

� d([M])/dt < 0

LTL(R) formulae

� minimum threshold value reached: F([M]>0.2) 

� minimum threshold value reached and maintained: FG([M]>0.2) 

� local maximum V: F ([M]<V & F ( [M]=V & F ([M]<V) ) 

� F ([M]>2 & F (d([M])/dt<0 & F ([M]<2 & d([M])/dt>0 & F(d([M])/dt<0))))

� oscil(M,n) defined as at least n alternances of the sign of the derivative
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LTL(R) Constraints with Real-time Variable

LTL(R) formulae with real-time variable

� Threshold value with a minimum delay

F([M]>0.2) & G(Time<5 ⇒[M]<0.2)

� Numerical data time series (for curve fitting)

F(Time=1 & [M]=0.05 & F(Time=2 & [M]=0.12& F(Time=3 & [M]=0.25)))

� Period constraint

Period(A,75)= ∃ t ∃v F(Time = t & [A] = v & d([A])/dt > 0 & X(d([A])/dt < 0)  

 & F(Time = t + 75 & [A] = v & d([A])/dt > 0 & X(d([A])/dt < 0))) 
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Numerical Integration of ODE Models
dX/dt = f(X). 

Initial conditions X0

Idea: discretize time t0, t1=t0+Δt0, t2=t1+Δt1, &  

and compute a numerical trace  (t0,X0,dX0/dt), (t1,X1,dX1/dt), & , (tn,Xn,dXn/dt)

Euler� s method: ti+1=ti+ Δt    Xi+1=Xi+f(Xi)*Δt

error estimation E(Xi+1)=|f(Xi)-f(Xi+1)|*Δt

Runge-Kutta� s method: intermediate computations at Δt/2 

adaptive step method: Δti+1= Δti/2 while E>Emax, otherwise Δti+1= 2*Δti

Rosenbrock� s implicit method for stiff systems: 

       solve Xi+1=Xi+f(Xi+1)*Δt by formal differentiation
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LTL(R) Trace-based Model Checking Algo

Input: An ODE system M given with initial conditions, an LTL(R) formula φ
Hypothesis: the formula can be checked over a finite period of time [0,T]

Output: whether φ is true in M
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LTL(R) Trace-based Model Checking Algo

Input: An ODE system M given with initial conditions, an LTL(R) formula φ
Hypothesis: the formula can be checked over a finite period of time [0,T]

Output: whether φ is true in M

" Compute a trace by numerical integration from 0 to T 
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LTL(R) Trace-based Model Checking Algo

Input: An ODE system M given with initial conditions, an LTL(R) formula φ
Hypothesis: the formula can be checked over a finite period of time [0,T]

Output: whether φ is true in M

" Compute a trace by numerical integration from 0 to T 

� Label each state of the trace with the formula� s constraints that are true,
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LTL(R) Trace-based Model Checking Algo

Input: An ODE system M given with initial conditions, an LTL(R) formula φ
Hypothesis: the formula can be checked over a finite period of time [0,T]

Output: whether φ is true in M

" Compute a trace by numerical integration from 0 to T 

� Label each state of the trace with the formula� s constraints that are true,

" Iteratively label the states with the sub-formulae that are true:

� Add X φ1 to the immediate predecessors of states labeled by φ1,
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LTL(R) Trace-based Model Checking Algo

Input: An ODE system M given with initial conditions, an LTL(R) formula φ
Hypothesis: the formula can be checked over a finite period of time [0,T]

Output: whether φ is true in M

" Compute a trace by numerical integration from 0 to T 

� Label each state of the trace with the formula� s constraints that are true,

" Iteratively label the states with the sub-formulae that are true:

� Add X φ1 to the immediate predecessors of states labeled by φ1,

� Add φ1 U φ2 to the predecessors of states labelled by φ2 while they satisfy φ1,
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LTL(R) Trace-based Model Checking Algo

Input: An ODE system M given with initial conditions, an LTL(R) formula φ
Hypothesis: the formula can be checked over a finite period of time [0,T]

Output: whether φ is true in M

" Compute a trace by numerical integration from 0 to T 

� Label each state of the trace with the formula� s constraints that are true,

" Iteratively label the states with the sub-formulae that are true:

� Add X φ1 to the immediate predecessors of states labeled by φ1,

� Add φ1 U φ2 to the predecessors of states labelled by φ2 while they satisfy φ1,

� Add φ1 W φ2 to the states labelled by φ1∧ φ2, to the last state if it is labelled by 
φ1, and to the predecessors of states labelled by φ1 W φ2 while they satisfy φ1,
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LTL(R) Trace-based Model Checking Algo

Input: An ODE system M given with initial conditions, an LTL(R) formula φ
Hypothesis: the formula can be checked over a finite period of time [0,T]

Output: whether φ is true in M

" Compute a trace by numerical integration from 0 to T 

� Label each state of the trace with the formula� s constraints that are true,

" Iteratively label the states with the sub-formulae that are true:

� Add X φ1 to the immediate predecessors of states labeled by φ1,

� Add φ1 U φ2 to the predecessors of states labelled by φ2 while they satisfy φ1,

� Add φ1 W φ2 to the states labelled by φ1∧ φ2, to the last state if it is labelled by 
φ1, and to the predecessors of states labelled by φ1 W φ2 while they satisfy φ1,

" Return true if the initial state is labelled by φ, and false otherwise
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Naïve Parameter Search Algorithm

Input: an ODE model M(p) with n parameters p in range [pmin,pmax], 

           an LTL(R) specification φ
Output: parameter values v such that M(v) |= φ 

              or fail if no such values
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Naïve Parameter Search Algorithm

Input: an ODE model M(p) with n parameters p in range [pmin,pmax], 

           an LTL(R) specification φ
Output: parameter values v such that M(v) |= φ 

              or fail if no such values

6. Scan the parameter value space [pmin,pmax]^n with a fixed step
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Naïve Parameter Search Algorithm

Input: an ODE model M(p) with n parameters p in range [pmin,pmax], 

           an LTL(R) specification φ
Output: parameter values v such that M(v) |= φ 

              or fail if no such values

" Scan the parameter value space [pmin,pmax]^n with a fixed step

" Test whether M(v) |= φ by trace-based model checking
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Naïve Parameter Search Algorithm

Input: an ODE model M(p) with n parameters p in range [pmin,pmax], 

           an LTL(R) specification φ
Output: parameter values v such that M(v) |= φ 

              or fail if no such values

" Scan the parameter value space [pmin,pmax]^n with a fixed step

" Test whether M(v) |= φ by trace-based model checking

" Return the first value set v which satisfies φ
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Naïve Parameter Search Algorithm

Input: an ODE model M(p) with n parameters p in range [pmin,pmax], 

           an LTL(R) specification φ
Output: parameter values v such that M(v) |= φ 

              or fail if no such values

" Scan the parameter value space [pmin,pmax]^n with a fixed step

" Test whether M(v) |= φ by trace-based model checking

" Return the first value set v which satisfies φ

Exponential complexity in O(s^n) where s is the maximum number of tried 
values in the range of n parameters

Gradient-based methods need a satisfaction degree for LTL(R) formulae&
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Cell Cycle Control Model [Tyson 91]

k1 for  _=>Cyclin.

k2*[Cyclin] for  Cyclin=>_.

k3*[Cyclin]*[Cdc2~{p1}] for Cyclin+Cdc2~{p1}=>Cdc2~{p1}-Cyclin~{p1}.
k4p*[Cdc2~{p1}-Cyclin~{p1}] for Cdc2~{p1}-Cyclin~{p1}=>Cdc2-Cyclin~{p1}.

k4*[Cdc2-Cyclin~{p1}]^2*[Cdc2~{p1}-Cyclin~{p1}] for 

      Cdc2~{p1}-Cyclin~{p1}=[Cdc2-Cyclin~{p1}]=>Cdc2-Cyclin~{p1}.

k5*[Cdc2-Cyclin~{p1}] for Cdc2-Cyclin~{p1}=>Cdc2~{p1}-Cyclin~{p1}.

k6*[Cdc2-Cyclin~{p1}] for Cdc2-Cyclin~{p1}=>Cdc2+Cyclin~{p1}.
k7*[Cyclin~{p1}] for Cyclin~{p1}=>_.

k8*[Cdc2] for  Cdc2=>Cdc2~{p1}.

k9*[Cdc2~{p1}] for Cdc2~{p1}=>Cdc2.

parameter(k1,0.015). parameter(k2,0.015). parameter(k3,200). 
parameter(k4p,0.018). parameter(k4,180). parameter(k5,0). 

parameter(k6,1). parameter(k7,0.6). parameter(k8,100).parameter(k9,100).

present(Cdc2,1). 
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Learning Parameters from Temporal Properties

biocham: learn_parameter([k3,k4],[(0,200),(0,200)],20,

                                            oscil(Cdc2-Cyclin~{p1},3),150).
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Learning Parameters from Temporal Properties

biocham: learn_parameter([k3,k4],[(0,200),(0,200)],20,

                                            oscil(Cdc2-Cyclin~{p1},3),150).

First values found :

parameter(k3,10).

parameter(k4,70).
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Learning Parameters from Temporal Properties

biocham: learn_parameter([k3,k4],[(0,200),(0,200)],20,

                oscil(Cdc2-Cyclin~{p1},3) & F([Cdc2-Cyclin~{p1}]>0.15), 150).

First values found :

parameter(k3,10).

parameter(k4,120).
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Learning Parameters from Temporal Properties

biocham: learn_parameter([k3,k4],[(0,200),(0,200)],20,

                                            period(Cdc2-Cyclin~{p1},35), 150).

First values found:

parameter(k3,10). 

parameter(k4,280).
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Leloup and Goldbeter (1999)

MPF preMPF

Wee1

Wee1P

Cdc25

Cdc25P
APC

APC

....

....

........

Cell cycle

Coupling Cell and Circadian Cycles 
through Wee1

BMAL1/CLOCK

PER/CRY

Circadian 
cycle

Wee1 mRNA

L[L. Calzone, S. Soliman 2006]
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PCN

Wee1m

Wee1
MPF
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entrainment
entrainment

Condition of Entrainment in Period
on Wee1/Cdc25

Entrainment in period constraint expressed in LTL with the period formula
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Overview of the Tutorial

1. Introduction

" Transposing programming concepts to the analysis of living processes

2. Rule-based modeling of biochemical systems

" Syntax: molecules, reactions, regulations, SBML/SBGN Biocham notations

" Semantics: Boolean, Differential and Stochastic interpretations of reactions

" Static analyses: consistency, influence graph circuits, protein functions,&

" Examples in cell signaling, gene expression, virus infection, cell cycle

3. Temporal Logic based formalization of biological properties

" Qualitative model-checking in propositional Computation Tree Logic CTL

" Quantitative model-checking in Linear Time Logic LTL(R) 

" Parameter search in high dimension w.r.t. LTL(R) specifications

" Robustness and sensitivity analyses w.r.t. LTL(R) specifications

4. Conclusion


