
François Fages  Tutorial ICSB'10 Edinburgh1

Overview of the Tutorial

1. Introduction

" Transposing programming concepts to the analysis of living processes

2. Rule-based modeling of biochemical systems

" Syntax: molecules, reactions, regulations, SBML/SBGN Biocham notations

" Semantics: Boolean, Differential and Stochastic interpretations of reactions

" Static analyses: consistency, influence graph circuits, protein functions,&

" Examples in cell signaling, gene expression, virus infection, cell cycle

3. Temporal Logic based formalization of biological properties

" Qualitative model-checking in propositional Computation Tree Logic CTL

" Quantitative model-checking in Linear Time Logic LTL(R) 

" Parameter search in high dimension w.r.t. LTL(R) specifications

" Robustness and sensitivity analyses w.r.t. LTL(R) specifications

4. Conclusion



François Fages  Tutorial ICSB'10 Edinburgh2

Cell Cycle Control by Cyclins: G1SG2M

G1: CdK4-CycD             S:   Cdk2-CycA             G2,M: Cdk1-CycA
       Cdk6-CycD                                                               Cdk1-CycB (MPF)

       Cdk2-CycE                                                             

Sir Paul Nurse
Nobel prize 2001



François Fages  Tutorial ICSB'10 Edinburgh3



François Fages  Tutorial ICSB'10 Edinburgh4

Mammalian Cell Cycle Control Map [Kohn 99]



François Fages  Tutorial ICSB'10 Edinburgh5

Kohn� s map detail for Cdk2

Complexation with CycA and CycE    

                

Biocham Rule Patterns:

cdk2~$P + cycA$C => cdk2~$PcycA$C
    where $C in {_,cks1} .
cdk2~$P + cycE~$Q$C => cdk2~$PcycE~$Q$C
    where $C in {_,cks1} .
p57 + cdk2~$PcycA$C => p57cdk2~$PcycA$C
    where $C in {_, cks1}.
cycE$C =[cdk2~{p2}cycE$S]=> cycE~{T380}$C
    where $S in {_, cks1} and $C in {_, cdk2~?, cdk2~?cks1}
Total: 147 rule patterns 2733 expanded rules [Chiaverini Danos 03]



François Fages  Tutorial ICSB'10 Edinburgh6

Computation Tree Logic CTL
Temporal logics extend classical logic with modal operators for time & non-det.

Introduced for program verification by [Pnueli 77]

Time

Non-determinism E, A

F,G,U EFφ

AGφ

A (ϕ1 U ϕ2)E (ϕ1 U ϕ2)U
until

AG()

safety

EG(ϕ)

¬  AF(¬  ϕ)

G
globally

AF(ϕ)

liveness

EF(ϕ)

¬AG(¬  ϕ)

F
finally

AX(ϕ)EX(ϕ)X
next time

A
always

E
exists 

        Non-det.

Time



François Fages  Tutorial ICSB'10 Edinburgh7

Biological Properties formalized in CTL 
(1/3)

About reachability:

" Can the cell produce some protein P?  reachable(P)==EF(P) 

" Can the cell produce P, Q and not R?  



François Fages  Tutorial ICSB'10 Edinburgh8

Biological Properties formalized in CTL 
(1/3)

About reachability:

" Can the cell produce some protein P?  reachable(P)==EF(P) 

" Can the cell produce P, Q and not R?  reachable(P^Q^¬R) 

" Can the cell always produce P?  



François Fages  Tutorial ICSB'10 Edinburgh9

Biological Properties formalized in CTL 
(1/3)

About reachability:

" Can the cell produce some protein P?  reachable(P)==EF(P) 

" Can the cell produce P, Q and not R?  reachable(P^Q^¬R) 

" Can the cell always produce P?  AG(reachable(P)) 

About pathways:

" Can the cell reach a set s of (partially described)  states while passing by 
another set of states s2?      



François Fages  Tutorial ICSB'10 Edinburgh10

Biological Properties formalized in CTL 
(1/3)

About reachability:

" Can the cell produce some protein P?  reachable(P)==EF(P) 

" Can the cell produce P, Q and not R?  reachable(P^Q^¬R) 

" Can the cell always produce P?  AG(reachable(P)) 

About pathways:

" Can the cell reach a set s of (partially described)  states while passing by 
another set of states s2?      EF(s2^EFs)

" Is it possible to produce P without Q ? 



François Fages  Tutorial ICSB'10 Edinburgh11

Biological Properties formalized in CTL 
(1/3)

About reachability:

" Can the cell produce some protein P?  reachable(P)==EF(P) 

" Can the cell produce P, Q and not R?  reachable(P^Q^¬R) 

" Can the cell always produce P?  AG(reachable(P)) 

About pathways:

" Can the cell reach a set s of (partially described)  states while passing by 
another set of states s2?      EF(s2^EFs)

" Is it possible to produce P without Q ? E(¬Q U P)
" Is state s2 a necessary checkpoint for reaching state s? 

  checkpoint(s2,s)== ¬E(¬s2 U s)



François Fages  Tutorial ICSB'10 Edinburgh12

Biological Properties formalized in CTL 
(1/3)

About reachability:

" Can the cell produce some protein P?  reachable(P)==EF(P) 

" Can the cell produce P, Q and not R?  reachable(P^Q^¬R) 

" Can the cell always produce P?  AG(reachable(P)) 

About pathways:

" Can the cell reach a set s of (partially described)  states while passing by 
another set of states s2?      EF(s2^EFs)

" Is it possible to produce P without Q ? E(¬Q U P)
" Is state s2 a necessary checkpoint for reaching state s? 

  checkpoint(s2,s)== ¬E(¬s2 U s)

" Is s2 always a checkpoint for s? AG(¬s > checkpoint(s2,s))



François Fages  Tutorial ICSB'10 Edinburgh13

Biological Properties formalized in CTL 
(2/3)

About stability:

" Is state s a stable state? stable(s)== AG(s)



François Fages  Tutorial ICSB'10 Edinburgh14

Biological Properties formalized in CTL 
(2/3)

About stability:

" Is state s a stable state? stable(s)== AG(s)
" Is s a steady state (with possibility of escaping) ? steady(s)==EG(s) 

" Can the cell reach a stable state s? 



François Fages  Tutorial ICSB'10 Edinburgh15

Biological Properties formalized in CTL 
(2/3)

About stability:

" Is state s a stable state? stable(s)== AG(s)
" Is s a steady state (with possibility of escaping) ? steady(s)==EG(s) 

" Can the cell reach a stable state s? EF(stable(s)) 
alternance of path quantifiers EFAG φ,
not in Linear Time Logic LTL (fragment without path quantifiers)

FG φ is not in LTL

" Must the cell reach a stable state s? 



François Fages  Tutorial ICSB'10 Edinburgh16

Biological Properties formalized in CTL 
(2/3)

About stability:

" Is state s a stable state? stable(s)== AG(s)
" Is s a steady state (with possibility of escaping) ? steady(s)==EG(s) 

" Can the cell reach a stable state s? EF(stable(s)) 
alternance of path quantifiers EFAG φ,
not in Linear Time Logic LTL (fragment without path quantifiers)

FG φ is not in LTL

" Must the cell reach a stable state s? AG(stable(s))

" What are the stable states? 



François Fages  Tutorial ICSB'10 Edinburgh17

Biological Properties formalized in CTL 
(2/3)

About stability:

" Is a set of states s a stable state? stable(s)== AG(s)
" Is s a steady state (with possibility of escaping) ? steady(s)==EG(s) 

" Can the cell reach a stable state s? EF(stable(s)) 
alternance of path quantifiers EFAG φ,
not in Linear Time Logic LTL (fragment without path quantifiers)

FG φ is not in LTL

" Must the cell reach a stable state s? AG(stable(s))

" What are the stable states? Not expressible in CTL. 
needs to combine CTL with search [Chan 00, Calzone-Chabrier-Fages-Soliman 05, 

Fages-Rizk 07 09].



François Fages  Tutorial ICSB'10 Edinburgh18

Biological Properties formalized in CTL 
(3/3)

About durations: 

" How long does it take for a molecule to become activated?

" In a given time, how many Cyclins A can be accumulated?

" What is the duration of a given cell cycle� s phase?

   



François Fages  Tutorial ICSB'10 Edinburgh19

Biological Properties formalized in CTL 
(3/3)

About durations: 

" How long does it take for a molecule to become activated?

" In a given time, how many Cyclins A can be accumulated?

" What is the duration of a given cell cycle� s phase?

   CTL operators abstract from durations. Time intervals can be modeled in FOL by 
adding numerical constraints for start times and durations.



François Fages  Tutorial ICSB'10 Edinburgh20

Biological Properties formalized in CTL 
(3/3)

About durations: 

" How long does it take for a molecule to become activated?

" In a given time, how many Cyclins A can be accumulated?

" What is the duration of a given cell cycle� s phase?

   CTL operators abstract from durations. Time intervals can be modeled in FOL by 
adding numerical constraints for start times and durations.

About oscillations:

" Can the system exhibit a cyclic behavior w.r.t. the presence of P ? 
oscil(P)== EG((F ¬P) ^ (F P))

    temporal operators not preceded by a path operator: CTL* formula

  approximation in CTL:  oscil(P)== EG((EF ¬P) ^ (EF P))



François Fages  Tutorial ICSB'10 Edinburgh21

Basic CTL Model-Checking Algorithm

Model Checking is an algorithm for computing, in a given finite Kripke structure K 
the set of states satisfying a CTL formula: 

{s∈S : s |= φ }.



François Fages  Tutorial ICSB'10 Edinburgh22

Basic CTL Model-Checking Algorithm

Model Checking is an algorithm for computing, in a given finite Kripke structure K 
the set of states satisfying a CTL formula: 

{s∈S : s |= φ }.

Represent K as a (finite) graph and iteratively label the nodes with the subformulas 
of φ which are true in that node.



François Fages  Tutorial ICSB'10 Edinburgh23

Basic CTL Model-Checking Algorithm

Model Checking is an algorithm for computing, in a given finite Kripke structure K 
the set of states satisfying a CTL formula: 

{s∈S : s |= φ }.

Represent K as a (finite) graph and iteratively label the nodes with the subformulas 
of φ which are true in that node.

" Add φ to the states satisfying φ



François Fages  Tutorial ICSB'10 Edinburgh24

Basic CTL Model-Checking Algorithm

Model Checking is an algorithm for computing, in a given finite Kripke structure K 
the set of states satisfying a CTL formula: 

{s∈S : s |= φ }.

Represent K as a (finite) graph and iteratively label the nodes with the subformulas 
of φ which are true in that node.

" Add φ to the states satisfying φ
" Add EF φ (EX φ) to the (immediate) predecessors of states labeled by φ



François Fages  Tutorial ICSB'10 Edinburgh25

Basic CTL Model-Checking Algorithm

Model Checking is an algorithm for computing, in a given finite Kripke structure K 
the set of states satisfying a CTL formula: 

{s∈S : s |= φ }.

Represent K as a (finite) graph and iteratively label the nodes with the subformulas 
of φ which are true in that node.

" Add φ to the states satisfying φ
" Add EF φ (EX φ) to the (immediate) predecessors of states labeled by φ
" Add E(φ1 U φ2 ) to the predecessor states of φ2 while they satisfy φ1



François Fages  Tutorial ICSB'10 Edinburgh26

Basic CTL Model-Checking Algorithm

Model Checking is an algorithm for computing, in a given finite Kripke structure K 
the set of states satisfying a CTL formula: 

{s∈S : s |= φ }.

Represent K as a (finite) graph and iteratively label the nodes with the subformulas 
of φ which are true in that node.

" Add φ to the states satisfying φ
" Add EF φ (EX φ) to the (immediate) predecessors of states labeled by φ
" Add E(φ1 U φ2 ) to the predecessor states of φ2 while they satisfy φ1
" Add EG φ  to the states for which there exists a path leading to a non trivial 

strongly connected component of the subgraph of states satisfying φ.



François Fages  Tutorial ICSB'10 Edinburgh27

Basic CTL Model-Checking Algorithm

Model Checking is an algorithm for computing, in a given finite Kripke structure K 
the set of states satisfying a CTL formula: 

{s∈S : s |= φ }.

Represent K as a (finite) graph and iteratively label the nodes with the subformulas 
of φ which are true in that node.

" Add φ to the states satisfying φ
" Add EF φ (EX φ) to the (immediate) predecessors of states labeled by φ
" Add E(φ1 U φ2 ) to the predecessor states of φ2 while they satisfy φ1
" Add EG φ  to the states for which there exists a path leading to a non trivial 

strongly connected component of the subgraph of states satisfying φ.

Model-checking algorithm in O(|K|*|φ|).

Complexity: CTL model-checking is Ptime-complete, 



François Fages  Tutorial ICSB'10 Edinburgh28

Symbolic CTL Model-Checking Algorithm

Represent finite Kripke structures using Boolean constraints for

" sets of states as a boolean constraint c(V)

" the transition relation as a boolean constraint r(V,V� )



François Fages  Tutorial ICSB'10 Edinburgh29

Symbolic CTL Model-Checking Algorithm

Represent finite Kripke structures using Boolean constraints for

" sets of states as a boolean constraint c(V)

" the transition relation as a boolean constraint r(V,V� )

Ordered Binary Decision Diagrams OBDD [Bryant 85] provide canonical forms for 
Boolean formulas (decides SAT in NP, and equivalence TAUT in co-NP)

(x⋁¬y)⋀(y⋁¬z)⋀(z⋁¬x) 

and 

(x⋁¬z)⋀(z⋁¬y)⋀(y⋁¬x) 

are equivalent, they

have the same BDD(x,y,z)                               



François Fages  Tutorial ICSB'10 Edinburgh30

Mammalian Cell Cycle Control Map [Kohn 99]



François Fages  Tutorial ICSB'10 Edinburgh31

Mammalian Cell Cycle Control Benchmark
147-2733 rules, 165 proteins and genes, 500 variables, 2500 states.
BIOCHAM NuSMV model-checker time in seconds: [Chabrier Fages 03 CMSB]

31.8sEG ( (EF ¬  CycA) & (EF CycA))Oscillations CycA

6sEG ( (EF ¬  CycB) & (EF CycB))  false !Osciallations CycB

2.2s¬  EF (¬  Cdc25~{Nterm} 
          U Cdk1~{Thr161}-CycB)

Checkpoint

for mitosis complex

1.7sEF PCNA-CycDReachability G1

1.9sEF CycDReachability G1

2sEF CycEReachability G1

29scompiling

Time: Query:Initial state G2



François Fages  Tutorial ICSB'10 Edinburgh32

Linear Time Logic with Constraints LTL(R)

Constraints over concentrations and derivatives as formulae over the reals:

� [M] > 0.2

� [M]+[P] > [Q]

� d([M])/dt < 0

LTL(R) formulae

� minimum threshold value reached: F([M]>0.2) 

� minimum threshold value reached and maintained: FG([M]>0.2) 

� local maximum V: F ([M]<V & F ( [M]=V & F ([M]<V) ) 

� F ([M]>2 & F (d([M])/dt<0 & F ([M]<2 & d([M])/dt>0 & F(d([M])/dt<0))))

� oscil(M,n) defined as at least n alternances of the sign of the derivative



François Fages  Tutorial ICSB'10 Edinburgh33

LTL(R) Constraints with Real-time Variable

LTL(R) formulae with real-time variable

� Threshold value with a minimum delay

F([M]>0.2) & G(Time<5 ⇒[M]<0.2)

� Numerical data time series (for curve fitting)

F(Time=1 & [M]=0.05 & F(Time=2 & [M]=0.12& F(Time=3 & [M]=0.25)))

� Period constraint

Period(A,75)= ∃ t ∃v F(Time = t & [A] = v & d([A])/dt > 0 & X(d([A])/dt < 0)  

 & F(Time = t + 75 & [A] = v & d([A])/dt > 0 & X(d([A])/dt < 0))) 



François Fages  Tutorial ICSB'10 Edinburgh34

Numerical Integration of ODE Models
dX/dt = f(X). 

Initial conditions X0

Idea: discretize time t0, t1=t0+Δt0, t2=t1+Δt1, &  

and compute a numerical trace  (t0,X0,dX0/dt), (t1,X1,dX1/dt), & , (tn,Xn,dXn/dt)

Euler� s method: ti+1=ti+ Δt    Xi+1=Xi+f(Xi)*Δt

error estimation E(Xi+1)=|f(Xi)-f(Xi+1)|*Δt

Runge-Kutta� s method: intermediate computations at Δt/2 

adaptive step method: Δti+1= Δti/2 while E>Emax, otherwise Δti+1= 2*Δti

Rosenbrock� s implicit method for stiff systems: 

       solve Xi+1=Xi+f(Xi+1)*Δt by formal differentiation

 



François Fages  Tutorial ICSB'10 Edinburgh35

LTL(R) Trace-based Model Checking Algo

Input: An ODE system M given with initial conditions, an LTL(R) formula φ
Hypothesis: the formula can be checked over a finite period of time [0,T]

Output: whether φ is true in M



François Fages  Tutorial ICSB'10 Edinburgh36

LTL(R) Trace-based Model Checking Algo

Input: An ODE system M given with initial conditions, an LTL(R) formula φ
Hypothesis: the formula can be checked over a finite period of time [0,T]

Output: whether φ is true in M

" Compute a trace by numerical integration from 0 to T 



François Fages  Tutorial ICSB'10 Edinburgh37

LTL(R) Trace-based Model Checking Algo

Input: An ODE system M given with initial conditions, an LTL(R) formula φ
Hypothesis: the formula can be checked over a finite period of time [0,T]

Output: whether φ is true in M

" Compute a trace by numerical integration from 0 to T 

� Label each state of the trace with the formula� s constraints that are true,



François Fages  Tutorial ICSB'10 Edinburgh38

LTL(R) Trace-based Model Checking Algo

Input: An ODE system M given with initial conditions, an LTL(R) formula φ
Hypothesis: the formula can be checked over a finite period of time [0,T]

Output: whether φ is true in M

" Compute a trace by numerical integration from 0 to T 

� Label each state of the trace with the formula� s constraints that are true,

" Iteratively label the states with the sub-formulae that are true:

� Add X φ1 to the immediate predecessors of states labeled by φ1,



François Fages  Tutorial ICSB'10 Edinburgh39

LTL(R) Trace-based Model Checking Algo

Input: An ODE system M given with initial conditions, an LTL(R) formula φ
Hypothesis: the formula can be checked over a finite period of time [0,T]

Output: whether φ is true in M

" Compute a trace by numerical integration from 0 to T 

� Label each state of the trace with the formula� s constraints that are true,

" Iteratively label the states with the sub-formulae that are true:

� Add X φ1 to the immediate predecessors of states labeled by φ1,

� Add φ1 U φ2 to the predecessors of states labelled by φ2 while they satisfy φ1,



François Fages  Tutorial ICSB'10 Edinburgh40

LTL(R) Trace-based Model Checking Algo

Input: An ODE system M given with initial conditions, an LTL(R) formula φ
Hypothesis: the formula can be checked over a finite period of time [0,T]

Output: whether φ is true in M

" Compute a trace by numerical integration from 0 to T 

� Label each state of the trace with the formula� s constraints that are true,

" Iteratively label the states with the sub-formulae that are true:

� Add X φ1 to the immediate predecessors of states labeled by φ1,

� Add φ1 U φ2 to the predecessors of states labelled by φ2 while they satisfy φ1,

� Add φ1 W φ2 to the states labelled by φ1∧ φ2, to the last state if it is labelled by 
φ1, and to the predecessors of states labelled by φ1 W φ2 while they satisfy φ1,



François Fages  Tutorial ICSB'10 Edinburgh41

LTL(R) Trace-based Model Checking Algo

Input: An ODE system M given with initial conditions, an LTL(R) formula φ
Hypothesis: the formula can be checked over a finite period of time [0,T]

Output: whether φ is true in M

" Compute a trace by numerical integration from 0 to T 

� Label each state of the trace with the formula� s constraints that are true,

" Iteratively label the states with the sub-formulae that are true:

� Add X φ1 to the immediate predecessors of states labeled by φ1,

� Add φ1 U φ2 to the predecessors of states labelled by φ2 while they satisfy φ1,

� Add φ1 W φ2 to the states labelled by φ1∧ φ2, to the last state if it is labelled by 
φ1, and to the predecessors of states labelled by φ1 W φ2 while they satisfy φ1,

" Return true if the initial state is labelled by φ, and false otherwise



François Fages  Tutorial ICSB'10 Edinburgh42

Naïve Parameter Search Algorithm

Input: an ODE model M(p) with n parameters p in range [pmin,pmax], 

           an LTL(R) specification φ
Output: parameter values v such that M(v) |= φ 

              or fail if no such values



François Fages  Tutorial ICSB'10 Edinburgh43

Naïve Parameter Search Algorithm

Input: an ODE model M(p) with n parameters p in range [pmin,pmax], 

           an LTL(R) specification φ
Output: parameter values v such that M(v) |= φ 

              or fail if no such values

6. Scan the parameter value space [pmin,pmax]^n with a fixed step



François Fages  Tutorial ICSB'10 Edinburgh44

Naïve Parameter Search Algorithm

Input: an ODE model M(p) with n parameters p in range [pmin,pmax], 

           an LTL(R) specification φ
Output: parameter values v such that M(v) |= φ 

              or fail if no such values

" Scan the parameter value space [pmin,pmax]^n with a fixed step

" Test whether M(v) |= φ by trace-based model checking



François Fages  Tutorial ICSB'10 Edinburgh45

Naïve Parameter Search Algorithm

Input: an ODE model M(p) with n parameters p in range [pmin,pmax], 

           an LTL(R) specification φ
Output: parameter values v such that M(v) |= φ 

              or fail if no such values

" Scan the parameter value space [pmin,pmax]^n with a fixed step

" Test whether M(v) |= φ by trace-based model checking

" Return the first value set v which satisfies φ



François Fages  Tutorial ICSB'10 Edinburgh46

Naïve Parameter Search Algorithm

Input: an ODE model M(p) with n parameters p in range [pmin,pmax], 

           an LTL(R) specification φ
Output: parameter values v such that M(v) |= φ 

              or fail if no such values

" Scan the parameter value space [pmin,pmax]^n with a fixed step

" Test whether M(v) |= φ by trace-based model checking

" Return the first value set v which satisfies φ

Exponential complexity in O(s^n) where s is the maximum number of tried 
values in the range of n parameters

Gradient-based methods need a satisfaction degree for LTL(R) formulae&



François Fages  Tutorial ICSB'10 Edinburgh47

Cell Cycle Control Model [Tyson 91]

k1 for  _=>Cyclin.

k2*[Cyclin] for  Cyclin=>_.

k3*[Cyclin]*[Cdc2~{p1}] for Cyclin+Cdc2~{p1}=>Cdc2~{p1}-Cyclin~{p1}.
k4p*[Cdc2~{p1}-Cyclin~{p1}] for Cdc2~{p1}-Cyclin~{p1}=>Cdc2-Cyclin~{p1}.

k4*[Cdc2-Cyclin~{p1}]^2*[Cdc2~{p1}-Cyclin~{p1}] for 

      Cdc2~{p1}-Cyclin~{p1}=[Cdc2-Cyclin~{p1}]=>Cdc2-Cyclin~{p1}.

k5*[Cdc2-Cyclin~{p1}] for Cdc2-Cyclin~{p1}=>Cdc2~{p1}-Cyclin~{p1}.

k6*[Cdc2-Cyclin~{p1}] for Cdc2-Cyclin~{p1}=>Cdc2+Cyclin~{p1}.
k7*[Cyclin~{p1}] for Cyclin~{p1}=>_.

k8*[Cdc2] for  Cdc2=>Cdc2~{p1}.

k9*[Cdc2~{p1}] for Cdc2~{p1}=>Cdc2.

parameter(k1,0.015). parameter(k2,0.015). parameter(k3,200). 
parameter(k4p,0.018). parameter(k4,180). parameter(k5,0). 

parameter(k6,1). parameter(k7,0.6). parameter(k8,100).parameter(k9,100).

present(Cdc2,1). 



François Fages  Tutorial ICSB'10 Edinburgh48

Learning Parameters from Temporal Properties

biocham: learn_parameter([k3,k4],[(0,200),(0,200)],20,

                                            oscil(Cdc2-Cyclin~{p1},3),150).



François Fages  Tutorial ICSB'10 Edinburgh49

Learning Parameters from Temporal Properties

biocham: learn_parameter([k3,k4],[(0,200),(0,200)],20,

                                            oscil(Cdc2-Cyclin~{p1},3),150).

First values found :

parameter(k3,10).

parameter(k4,70).



François Fages  Tutorial ICSB'10 Edinburgh50

Learning Parameters from Temporal Properties

biocham: learn_parameter([k3,k4],[(0,200),(0,200)],20,

                oscil(Cdc2-Cyclin~{p1},3) & F([Cdc2-Cyclin~{p1}]>0.15), 150).

First values found :

parameter(k3,10).

parameter(k4,120).



François Fages  Tutorial ICSB'10 Edinburgh51

Learning Parameters from Temporal Properties

biocham: learn_parameter([k3,k4],[(0,200),(0,200)],20,

                                            period(Cdc2-Cyclin~{p1},35), 150).

First values found:

parameter(k3,10). 

parameter(k4,280).



François Fages  Tutorial ICSB'10 Edinburgh52

Leloup and Goldbeter (1999)

MPF preMPF

Wee1

Wee1P

Cdc25

Cdc25P
APC

APC

....

....

........

Cell cycle

Coupling Cell and Circadian Cycles 
through Wee1

BMAL1/CLOCK

PER/CRY

Circadian 
cycle

Wee1 mRNA

L[L. Calzone, S. Soliman 2006]



François Fages  Tutorial ICSB'10 Edinburgh53

PCN

Wee1m

Wee1
MPF

BN

Cdc25



François Fages  Tutorial ICSB'10 Edinburgh54

entrainment
entrainment

Condition of Entrainment in Period
on Wee1/Cdc25

Entrainment in period constraint expressed in LTL with the period formula



François Fages  Tutorial ICSB'10 Edinburgh55

Overview of the Tutorial

1. Introduction

" Transposing programming concepts to the analysis of living processes

2. Rule-based modeling of biochemical systems

" Syntax: molecules, reactions, regulations, SBML/SBGN Biocham notations

" Semantics: Boolean, Differential and Stochastic interpretations of reactions

" Static analyses: consistency, influence graph circuits, protein functions,&

" Examples in cell signaling, gene expression, virus infection, cell cycle

3. Temporal Logic based formalization of biological properties

" Qualitative model-checking in propositional Computation Tree Logic CTL

" Quantitative model-checking in Linear Time Logic LTL(R) 

" Parameter search in high dimension w.r.t. LTL(R) specifications

" Robustness and sensitivity analyses w.r.t. LTL(R) specifications

4. Conclusion


