
Exploiting Model Checking in
Constraint-based

Approaches to the Protein Folding
Problem

Elisabetta De Maria Agostino Dovier
Angelo Montanari Carla Piazza

Department of Mathematics and Computer Science
University of Udine, Italy

WCB 2006
September 25th, 2006

Nantes, France

Outline of the presentation

• The Protein Folding Problem

• Protein Models

• Model Checking and Temporal Logics

• Model Checking for Protein Folding

• Some preliminary experimental results

• Future developments

The Protein Folding Problem (PFP)

The Protein Folding Problem

Given the Primary Structure of a protein, the PSP/PF Problem
consists in determining its Tertiary Structure (conformation).

Anfinsen’s thermodynamic hypothesis

The conformation adopted by a protein (native conformation) is
the one with minimum energy.

Energy functions

The energy of a conformation can be modeled by means of
energy functions, which express the energy level in terms of the
interactions between pairs of amino acids.

Simplified models of proteins

Restrict the admissible positions of amino acids in the space

• lattice space models.

Simplified energy functions

• HP model

• 20 × 20 potential matrix

• HPNX model

Folding in a square lattice
Definition [Folding]

In Z
2, a folding of a sequence s = s0 . . . sn is a function

ω : [0 . . . n] → Z
2 such that

(i) ∀0 ≤ i < n, |ω(i) − ω(i + 1)| = 1;

(ii) ∀i 6= j , ω(i) 6= ω(j) (ω is self avoiding).

Definition [Topological neighbors]

Two amino acids si and sj of a given folding ω are topological
neighbors if j 6= i ± 1 and |ω(i) − ω(j)| = 1.

Energy of a folding

HP: opposite of the number of topological HH neighbors.
20 × 20: summation of the contribution of each pair of
topological neighbors.

Basic assumptions

• The length of a sequence s = s0 . . . sn is n.

• To represent the conformations of a sequence of length n,
we use the subset L = {(i , j) : i ∈ [0, 2n], j ∈ [0, 2n]} of N

2.

• W.l.o.g., we assume ω(0) = (n, n) and we fix
ω(1) = (n, n + 1).

• We represent a folding of a sequence of length n as a
string of length n − 1 on the alphabet {l , f , r}.

An example

5

5

n = 5

Figure: String rllf on 10 × 10 lattice.

The number of all possible foldings of a sequence of length n is
bounded by 3n−1 (it is ∼ 1.93·2.64n·n0.34

4).

Valid transformations among foldings
Definition [Pivot Move]

Let f = f2 . . . fn, with fi ∈ {l , f , r} for all 2 ≤ i ≤ n, be a folding of
a sequence s of length n. A folding f ′ of s is obtained from f
through a pivot move with pivot k − 1, with 2 ≤ k ≤ n, if f ′i = fi
for all i 6= k and f ′k 6= fk .

1

2

3

ffl

fll frlrfllf l fff ffr

pivot : 1

pivot : 2

pivot : 3

Figure: Pivot moves from string ffl.

Transition Systems

Definition [Transition System]

Let AP be a set of atomic propositions. A transition system over
AP is a tuple M = (Q, T , L), where

• Q is a finite set of states;

• T ⊆ Q × Q is a total transition relation, that is, for every
state q ∈ Q there is a state q′ ∈ Q such that T (q, q′);

• L : Q → 2AP is a labeling function that maps every state
into the set of atomic propositions that hold at it.

2D Protein Transition System

The 2D Protein Transition System of a string P of length n over
{H, P} is a tuple MP = (Q, T , L), where

• Q is the set of all foldings of length n on the 2n × 2n 2D
lattice;

• T ⊆ Q × Q contains the pairs of states (q1, q2) such that
q2 can be obtained from q1 by a pivot move;

• L : Q → 2AP is a labeling function over the set AP of atomic
propositions which consists of the following 3(n-1)
predicates

2nd l , . . . , ith l , . . . , nth l ,
2nd f , . . . , ith f , . . . , nth f ,
2nd r , . . . , ith r , . . . , nth r ,

plus the following three predicates
min en, inter en, max en.

Temporal Logics
• Temporal logics are formalisms for describing sequences

of transitions between states.
• CTL∗ (computation tree logic).
• CTL∗ formulae are obtained by (repeatedly) applying

Boolean connectives (∧,∨,¬,→), path quantifiers (A, E),
and state quantifiers (X , U, F , G) to atomic formulae.

Path quantifiers

A: all paths starting from a
given state have some
property.

Figure: Af

Temporal Logics
• Temporal logics are formalisms for describing sequences

of transitions between states.
• CTL∗ (computation tree logic).
• CTL∗ formulae are obtained by (repeatedly) applying

Boolean connectives (∧,∨,¬,→), path quantifiers (A, E),
and state quantifiers (X , U, F , G) to atomic formulae.

Path quantifiers

E: some path starting from a
given state has some
property.

Figure: Ef

Temporal Logics
• Temporal logics are formalisms for describing sequences

of transitions between states.
• CTL∗ (computation tree logic).
• CTL∗ formulae are obtained by (repeatedly) applying

Boolean connectives (∧,∨,¬,→), path quantifiers (A, E),
and state quantifiers (X , U, F , G) to atomic formulae.

State quantifiers

X (next time): a property
holds at the next state of a
path.

f

Figure: Xf

Temporal Logics
• Temporal logics are formalisms for describing sequences

of transitions between states.
• CTL∗ (computation tree logic).
• CTL∗ formulae are obtained by (repeatedly) applying

Boolean connectives (∧,∨,¬,→), path quantifiers (A, E),
and state quantifiers (X , U, F , G) to atomic formulae.

State quantifiers

U (until): there is a state on
the path where the second of
its argument properties holds
and, at every preceding state
on the path, the first of its two
argument properties holds.

f2

Figure: f1 U f2

Temporal Logics
• Temporal logics are formalisms for describing sequences

of transitions between states.
• CTL∗ (computation tree logic).
• CTL∗ formulae are obtained by (repeatedly) applying

Boolean connectives (∧,∨,¬,→), path quantifiers (A, E),
and state quantifiers (X , U, F , G) to atomic formulae.

State quantifiers

U (until): there is a state on
the path where the second of
its argument properties holds
and, at every preceding state
on the path, the first of its two
argument properties holds.

f1

f1

f1

f1

f2

Figure: f1 U f2

Temporal Logics
• Temporal logics are formalisms for describing sequences

of transitions between states.
• CTL∗ (computation tree logic).
• CTL∗ formulae are obtained by (repeatedly) applying

Boolean connectives (∧,∨,¬,→), path quantifiers (A, E),
and state quantifiers (X , U, F , G) to atomic formulae.

State quantifiers

F (sometimes in the future):
a property holds at some
state on the path.

f

Figure: Ff

Temporal Logics
• Temporal logics are formalisms for describing sequences

of transitions between states.
• CTL∗ (computation tree logic).
• CTL∗ formulae are obtained by (repeatedly) applying

Boolean connectives (∧,∨,¬,→), path quantifiers (A, E),
and state quantifiers (X , U, F , G) to atomic formulae.

State quantifiers

G (always in the future): a
property is true at every state
on the path.

f

f

f

f

f

f

Figure: Gf

CTL and LTL (1)

We focus our attention on two proper fragments of CTL∗.

CTL (branching time logic)

• It allows one to quantify
over the paths starting from
a given state.

• It constrains every state
quantifier to be immediately
preceded by a path
quantifier.

LTL (linear time logic)

• It allows to describe events
along a single computation
path.

• Its formulae are of the form
Af , where f does not
contain path quantifiers, but
it allows the nesting of state
quantifiers.

CTL and LTL (2)

CTL (branching time logic)

• The complexity of model
checking is linear in the
number of states and
edges of the transition
system.

• There are many tools for
checking if finite state
systems satisfy CTL
formulae.

LTL (linear time logic)

• The model checking
problem is
PSPACE-complete.

• To master the complexity of
LTL model checking:
on-the-fly model checking.

The Model Checking Problem
• Given a Transition System M = (Q, T , L), a state q ∈ Q,

and a temporal logic formula f expressing some desirable
property of the system, the model checking problem
consists in establishing whether M, q |= f or not.

If q does not satisfy the formula,
model checking algorithms
produce a counterexample that
falsifies it.

AG pink?

.

.

.

.

.

.

.

.

.

.

.

.

Properties of the 2D Protein Transition System (1)

F1: Does it exist a path of length at most k that reaches a state
with minimum energy?

CTL: min en ∨ EXmin en ∨ · · · ∨ EX . . . EX
︸ ︷︷ ︸

k

min en ≡

∨k
i=0 E1X1 . . . EiXimin en.

LTL :
A(¬min en ∧ X¬min en ∧ XX¬min en ∧ · · · ∧ X . . . X

︸ ︷︷ ︸

k

¬min en)

≡ A(
∧k

i=0 X1 . . . Xi¬min en).

Properties of the 2D Protein Transition System (2)

F2: Is energy the minimum one? Alternatively, if energy is the
maximum one, is it possible to reach a state with minimum
energy without passing through states with intermediate
energy?

CTL, LTL : A(max en U min en).

Properties of the 2D Protein Transition System (3)

F3: Is it possible to reach in one step a folding where the first
half of the sequence is a helix of the form rrllrr . . . ?

If m = bn/2c is odd, we have:
CTL: EX (

∧m−1
i=2,i=2+4·j,j≥0(ith r ∧ i + 1th r) ∧

∧m−1
i=4,i=4+4·j,j≥0(ith l ∧ i + 1th l)).

If m = 2 + 4 · j , j ≥ 0, we have:
CTL: EX (

∧m−1
i=2,i=2+4·j,j≥0(ith r ∧ i + 1th r) ∧

∧m−1
i=4,i=4+4·j,j≥0(ith l ∧ i + 1th l) ∧ mth r).

If m = 4 + 4 · j , j ≥ 0, we have:
CTL: EX (

∧m−1
i=2,i=2+4·j,j≥0(ith r ∧ i + 1th r) ∧

∧m−1
i=4,i=4+4·j,j≥0(ith l ∧ i + 1th l) ∧ mth l).

Properties of the 2D Protein Transition System (4)

F4: Is it true that every state which is at most k steps far from
the current one has maximum energy, i.e., energy equal to 0?

CTL: max en ∧ AXmax en ∧ · · · ∧ AX . . . AX
︸ ︷︷ ︸

k

max en ≡

∧k
i=0 A1X1 . . . AiXimax en.

LTL : A(max en ∧ Xmax en ∧ · · · ∧ X . . . X
︸ ︷︷ ︸

k

max en) ≡

A(
∧k

i=0 X1 . . . Ximax en).

Experimental results (1)

SICStus Prolog

• 2D Protein Transition System

• Model Checking algorithms to verify properties F1-F4 and
other relevant properties.

Example

States with energy equal to 0 that satisfy property F1 when
k = 1, i.e., states with maximum energy that reach in one step
a state with minimum energy.

Experimental results (2)

N=8

HP model

string= HHHHHHHHH;
min en=-4;
States fullfiling the request (8):
lrflflf → llflflf , lfflflf → llflflf ,
rlfrfrf → rrfrfrf , rffrfrf → rrfrfrf ,
flflfrl → flflfll , flflffl → flflfll ,
frfrflr → frfrfrr , frfrffr → frfrfrr .

20 × 20 model

string= cilfmvwhy;
min en=-8179;
States fullfiling the request (4):
lrflflf → llflflf , lfflflf → llflflf ,
rlfrfrf → rrfrfrf , rffrfrf → rrfrfrf .

Experimental results (3)

Example

Are there states with an energy different from the minimum one
that may reach in one step a state with a greater energy which,
in its turn, may reach in a few steps a state with minimum
energy?

HP model

N=7;
string= HHHHHHHH;
min en=-3;
lrlfll(−2) → lrlffl(0) → lrllfl(−3).

20 × 20 model

N= 5;
string= pcdehw;
min en=-2777;
flrr(−613) → flrf (0) →
fllf (−2777).

Ongoing work and future developments

State explosion problem: a protein of length n gives rise to a
transition system where the number of states is Θ(3n−1).
⇒
On the fly Model Checking.

Improve the solution search of the protein folding problem.

Understand protein energy functions.

Ongoing work and future developments

State explosion problem: a protein of length n gives rise to a
transition system where the number of states is Θ(3n−1).
⇒
On the fly Model Checking.

Improve the solution search of the protein folding problem.

Understand protein energy functions.

Ongoing work and future developments

State explosion problem: a protein of length n gives rise to a
transition system where the number of states is Θ(3n−1).
⇒
On the fly Model Checking.

Improve the solution search of the protein folding problem.

Understand protein energy functions.

