Concurrency, self-organisation and molecular biology

Fabien Tarissan

MOCA - June 25, 2007

AnALYSING THE DYNAMIC OF NETWOKS

Some features of the networks:

- Concurrency : parallel composition
- Mobility : dynamics of the connections, migration

Suitable theoretical framework: Process algebras

- Computing unit \longrightarrow process
- Emission/reception on channels
- Private name sharing
$\ldots \pi$-calculus (Milner)
- Notion of compartment
- Locating the communications
... Mobile Ambient (Cardelli \& Gordon)

An ALTERNATIVE

Applications:

- Self-organization phenomena
- Modeling of molecular biology
\longrightarrow Symmetry of the interactions: collisions
Reformulation of previous framework: κ-calcul, Brane calculi
- Protein \rightarrow process
- Bound between proteins \rightarrow sharing of a common name

Contributions: extension, integration

FRAMEWORK

Starting from κ-calculus (with Vincent Danos)

1. Top-down approach: Synthesizing distributed programs from a given specification:

- for trees
- for graphs

2. Exploring reversibility features:

- in the langage itself
- using reversible process algebra (with Jean Krivine)

3. Bottom-up approach: biok-calculus (with Cosimo Laneve)

FRAMEWORK

Starting from κ-calculus (with Vincent Danos)

1. Top-down approach: Synthesizing distributed programs from a given specification:

- for graphs

3. Bottom-up approach: biok-calculus (with Cosimo Laneve)

Collective Behaviour

- Self-organizing: How a collective phenomenon may emerge from multiple interactions (analysis and synthesis)
- Recurrent problem:
- Molecular biology (analysis)
- Genetic engineering (synthesis)
- Distributed robotics (synthesis)

PRELIMINARY WORK

－ \mathcal{G} ：Set of explorative graphs：

ロ 司 三 ミ 引 引のく

Preliminary work

- \mathcal{G} : Set of explorative graphs:

- Assembling graph of the final target:

The syntax

Syntactic representation of graphs:

- Nodes = agents
- Edges = private names sharing

$$
0 \quad \text { or } 0 \text { becomes }\langle x\rangle,\langle x, y\rangle,\langle y\rangle
$$

Construction rules :

$$
\langle x\rangle,\langle x, y\rangle,\langle y\rangle,\langle \rangle \longrightarrow(\nu z)(\langle x\rangle,\langle x, y, z\rangle,\langle y\rangle,\langle z\rangle)
$$

Formalisation of the problem

- Extraction of a core language: $\langle x\rangle,\langle x\rangle,\langle \rangle \nrightarrow(\nu y)(\langle x\rangle,\langle x, y\rangle,\langle y\rangle)$ \Longrightarrow restriction on synchronisation ability
- Expected property: equivalent behaviour

Formalisation of THE PROBLEM

- Extraction of a core language: $\langle x\rangle,\langle x\rangle,\langle \rangle \nrightarrow(\nu y)(\langle x\rangle,\langle x, y\rangle,\langle y\rangle)$ \Longrightarrow restriction on synchronisation ability
- Expected property: equivalent behaviour

What does that mean ?

- Comparison of transitions
- Comparison of states
\Longrightarrow Mathematical tool: bisimulation

InTuitive Features of The Algorithm

- Only one active agent by component.
- Local knowledge of the component's structure.
- Each agent knows its role in the component.
- Propagation of the changes related to an interaction by the use of a spanning tree.

TRADUCTION OF THE REACTIONS

Set of reactions :

- Connection between 2 disjoint complexes

- Cyclic connection

- Propagation updates
- Activity switch
- Mechanism to handle the deadlocks

Demo

BotTOM-UP APPROACH

Problem: Extracting a functional meaning of sub-networks

- Several agents may interact at the same time by means of several sites
- competition for resources (sites)
- concurrency of the interactions
- nondeterminism
- Interactions may involve simple agents (proteins) or complex ones (compartments) and may cause small local changes or more structural ones.
- The overall behaviour is deterministic in general.

Two DIFFERENT DIRECTIONS

Two different approaches:

- Based on π-calculus (Regev-Shapiro, Danos-Laneve): κ-calcul
- Based on Ambients (Cardelli): Brane Calculi

For modelling different biological systems:

- Signal transduction pathways, gene regulatory networks, ...
- Molecular transport, virus infections, ...

A LANGUAGE FOR PROTEINS AND MEMBRANES

Proteic complex：

$$
\begin{aligned}
& \mathrm{A}\left(1^{x}+2^{y}+3\right), \mathrm{B}\left(1^{x}+\overline{2}\right) \\
& \mathrm{C}\left(1+\overline{2}+3^{y}\right)
\end{aligned}
$$

Compartment with a transmembrane receptor：

$$
\left(\mathrm{A}\left(1+\overline{2}+3^{x}\right)\right)\left[\mathrm{B}\left(1^{x}\right)\right]
$$

BIOK: THE SYNTAX

Solutions S:
$S::=$

A (σ)
$m(M)[S]$
S,S
solution
(empty solution)
(protein)
(compartment)
(group)

BIOK: THE SYNTAX

Solutions S:

$$
\begin{aligned}
S::= & \\
& \mathbf{0} \\
& \mathrm{A}(\sigma) \\
& m(M)[S] \\
& S, S
\end{aligned}
$$

solution
(empty solution)
(protein)
(compartment)
(group)

Well formedness constraints:

- constraint on the connections

BIOK: THE SYNTAX

Solutions S:

0

$\mathrm{A}(\sigma)$
$m(\mathrm{M})[\mathrm{S}]$
S,S

solution

(empty solution)
(protein)
(compartment)
(group)

Well formedness constraints:

- constraint on the connections
- constraint on the membranes

BIOK: THE SYNTAX

Solutions S:

$$
\begin{aligned}
\mathrm{S}::= & \\
& \mathbf{0} \\
& \mathrm{A}(\sigma) \\
& m(\mathrm{M})[\mathrm{S}] \\
& \mathrm{S}, \mathrm{~S}
\end{aligned}
$$

solution

(empty solution)
(protein)
(compartment)
(group)

Well formedness constraints:

- constraint on the connections
- constraint on the membranes
- constraint on the compartments

Some notations

- We write ϕ, ψ, \cdots, for partial interfaces
- Simple interactions: complexations \mathcal{C} and decomplexations \mathcal{D} between proteins
- Based on a local knowledge of the proteins: (A, $\left.i, \phi, \phi^{\prime}\right)$

Example: $\left(\left(\mathrm{s}, 1,,_{-}\right),(\mathrm{R}, 1, \overline{2}, 2)\right) \in \mathcal{C}$
$\mathrm{S}(1+2+\overline{3}), \mathrm{R}(1+\overline{2}+3) \longrightarrow \mathrm{S}\left(1^{\times}+2+\overline{3}\right), \mathrm{R}\left(1^{\times}+2+3\right)$

BIO κ : THE LABELLED TRANSITION SYSTEM

The transition relation $\xrightarrow{\mu}$ is the least one satisfying the reductions:

- semi-interactions

$$
\frac{\left(\mathrm{A}, i, \phi, \phi^{\prime}\right) \in \mathcal{C}(\mathrm{r})}{\mathrm{A}(i+\phi+\sigma) \xrightarrow{\mathrm{A}_{\mathrm{x}}^{\times}} \mathrm{A}\left(i^{\times}+\phi^{\prime}+\sigma\right)} \quad \frac{\left(\mathrm{A}, i, \phi, \phi^{\prime}\right) \in \mathcal{D}(\mathrm{r})}{\mathrm{A}\left(i^{\times}+\phi+\sigma\right) \xrightarrow{\mathrm{A}_{\mathrm{x}}^{\times}} \mathrm{A}\left(i+\phi^{\prime}+\sigma\right)}
$$

- interactions proteins-proteins

$$
\left.\xrightarrow[{\mathrm{S}, \mathrm{~T} \xrightarrow{\tau} \mathrm{~S}^{\mathrm{A}_{x}^{\times}} \mathrm{S}^{\prime}, \mathrm{T}^{\prime}}]{\mathrm{B}} \mathrm{~B}_{x}^{\times} \mathrm{T}^{\prime} \quad \xrightarrow[{m(\mathrm{M})[\mathrm{S}] \xrightarrow{\tau} \mathrm{m}\left(\mathrm{M}^{\prime}\right)\left[\mathrm{S}^{\prime}\right.}]\right]{\mathrm{M} \xrightarrow{\mathrm{~A}_{\mathrm{x}}^{\times}} \mathrm{M}^{\prime} \mathrm{S} \xrightarrow{\mathrm{~B}_{x}^{\times}} \mathrm{S}^{\prime}}
$$

BIO κ ：THE LABELLED TRANSITION SYSTEM

－Lifting to the context

$$
\frac{\mathrm{S} \xrightarrow{\mu} \mathrm{~S}^{\prime}}{\mathrm{S}, \mathrm{~T} \xrightarrow{\mu} \mathrm{~S}^{\prime}, \mathrm{T}} \quad \frac{\mathrm{M} \xrightarrow{\mu} \mathrm{M}^{\prime}}{m(\mathrm{M})[\mathrm{S}] \xrightarrow{\mu} m\left(\mathrm{M}^{\prime}\right)[\mathrm{S}]}
$$

$$
\frac{\mathrm{S} \xrightarrow{\tau} \mathrm{~S}^{\prime}}{m(\mathrm{M})[\mathrm{S}] \xrightarrow{\tau} m(\mathrm{M})\left[\mathrm{S}^{\prime}\right]}
$$

A TOOL TO COMPARE THE SYSTEMS

Some notations:
$-\mathrm{S} \xrightarrow{\tau} \mathrm{S}^{\prime}$ represents $\mathrm{S} \xrightarrow{\tau} \mathrm{S}^{\prime}$
$-\mathrm{S} \xrightarrow{\mu} \mathrm{S}^{\prime}$, with $\mu \neq \tau$, represents $\mathrm{S} \xrightarrow{\tau} \xrightarrow{\mu} \xrightarrow{\tau} \mathrm{S}^{\prime}$

A (weak) bisimulation is a symmetric binary relation \mathfrak{R} between solutions such that $\mathrm{S} \mathfrak{R} T$ implies:

1. if $S \xrightarrow{\tau} S^{\prime}$ then $T \xlongequal{\tau} \mathrm{~T}^{\prime}$ and $\mathrm{S}^{\prime} \mathfrak{R} \mathrm{T}^{\prime}$
2. if $S \xrightarrow{A_{x}^{x}} S^{\prime}$ then $T \xrightarrow{A_{x}^{x}} T^{\prime}$ and $S^{\prime} \Re T^{\prime}$.

We write $S \approx T$ if $S \mathfrak{R} T$ for some bisimulation \mathfrak{R}.

The BLACK BOX

Theorem : The bisimulation associated to the labelled transition system is a congruence.

Two solutions which are bisimilar can replace each other independently of the context in which they are.

The BLACK BOX

Theorem : The bisimulation associated to the labelled transition system is a congruence.

Two solutions which are bisimilar can replace each other independently of the context in which they are.

The Black Box

Theorem : The bisimulation associated to the labelled transition system is a congruence.

Two solutions which are bisimilar can replace each other independently of the context in which they are.

The Black Box

Theorem : The bisimulation associated to the labelled transition system is a congruence.

Two solutions which are bisimilar can replace each other independently of the context in which they are.

The Black Box

Theorem : The bisimulation associated to the labelled transition system is a congruence.

Two solutions which are bisimilar can replace each other independently of the context in which they are.

The Black Box

Theorem ：The bisimulation associated to the labelled transition system is a congruence．

Two solutions which are bisimilar can replace each other independently of the context in which they are．

ㅁ 鸟

The BLACK BOX

Theorem : The bisimulation associated to the labelled transition system is a congruence.

Two solutions which are bisimilar can replace each other independently of the context in which they are.

Fusions of membranes

- core-bio κ keeps the hierarchical structure of the solutions
- It is impossible to describe phenomena such as the fusion between two endosomes :

$$
\operatorname{esm}(\mathrm{M})[\mathrm{S}], \operatorname{esm}(\mathrm{N})[\mathrm{T}] \longrightarrow \operatorname{esm}(\mathrm{M}, \mathrm{~N})[\mathrm{S}, \mathrm{~T}]
$$

CORE BIO κ WITH MREAGENTS

The syntax of bios:

S ::=
A (σ)
$m(M)[S]$
S, S
$m(M)[S] \| T$

solution

(empty solution)
(protein)
(compartment)
(group)
(mreagent)

Fusions

By the use of a fonction $\mathcal{F}:\left(m, m^{\prime}\right)=n$

$$
\frac{m \in \mathcal{F}}{m(\mathrm{M})[\mathrm{S}] \xrightarrow{m} m(\mathrm{M})[\mathrm{S}] \| \mathbf{0}} \quad \stackrel{\mathrm{S} \xrightarrow{\mu} m(\mathrm{M})\left[\mathrm{S}^{\prime}\right] \| \mathrm{S}^{\prime \prime}}{\mathrm{S}, \mathrm{~T} \xrightarrow{\mu} m(\mathrm{M})\left[\mathrm{S}^{\prime}\right] \|\left(\mathrm{S}^{\prime \prime}, \mathrm{T}\right)}
$$

Fusions

By the use of a fonction $\mathcal{F}:\left(m, m^{\prime}\right)=n$
$\frac{m \in \mathcal{F}}{m(\mathrm{M})[\mathrm{S}] \xrightarrow{m} m(\mathrm{M})[\mathrm{S}] \| \mathbf{0}} \quad \stackrel{\mathrm{S} \xrightarrow{\mu} m(\mathrm{M})\left[\mathrm{S}^{\prime}\right] \| \mathrm{S}^{\prime \prime}}{\mathrm{S}, \mathrm{T} \xrightarrow{\mu} m(\mathrm{M})\left[\mathrm{S}^{\prime}\right] \|\left(\mathrm{S}^{\prime \prime}, \mathrm{T}\right)}$

Horizontal fusion

$$
\frac{\mathrm{S} \xrightarrow{m} m(\mathrm{M})[\mathrm{T}]\left\|\mathrm{U} \mathrm{~S}^{\prime} \xrightarrow{m^{\prime}} m^{\prime}\left(\mathrm{M}^{\prime}\right)\left[\mathrm{T}^{\prime}\right]\right\| \mathrm{U}^{\prime}}{\mathrm{S}, \mathrm{~S}^{\prime} \xrightarrow{\tau} \mathrm{U}, \mathrm{U}^{\prime}, n\left(\mathrm{M}, \mathrm{M}^{\prime}\right)\left[\mathrm{T}, \mathrm{~T}^{\prime}\right]}
$$

Fusions

By the use of a function $\mathcal{F}:\left(m, m^{\prime}\right)=n$
$\frac{m \in \mathcal{F}}{m(\mathrm{M})[\mathrm{S}] \xrightarrow{m} m(\mathrm{M})[\mathrm{S}] \| \mathbf{0}} \quad \stackrel{\mathrm{S} \xrightarrow{\mu} m(\mathrm{M})\left[\mathrm{S}^{\prime}\right] \| \mathrm{S}^{\prime \prime}}{\mathrm{S}, \mathrm{T} \xrightarrow{\mu} m(\mathrm{M})\left[\mathrm{S}^{\prime}\right] \|\left(\mathrm{S}^{\prime \prime}, \mathrm{T}\right)}$

Horizontal fusion

$$
\frac{\mathrm{S} \xrightarrow{m} m(\mathrm{M})[\mathrm{T}]\left\|\mathrm{U} \mathrm{~S}^{\prime} \xrightarrow{m^{\prime}} m^{\prime}\left(\mathrm{M}^{\prime}\right)\left[\mathrm{T}^{\prime}\right]\right\| \mathrm{U}^{\prime}}{\mathrm{S}, \mathrm{~S}^{\prime} \xrightarrow{\tau} \mathrm{U}, \mathrm{U}^{\prime}, n\left(\mathrm{M}, \mathrm{M}^{\prime}\right)\left[\mathrm{T}, \mathrm{~T}^{\prime}\right]}
$$

Vertical fusion

$$
\frac{\mathrm{S} \xrightarrow{m} m(\mathrm{M})[\mathrm{T}] \| \mathrm{U}}{m^{\prime}\left(\mathrm{M}^{\prime}\right)[\mathrm{S}] \xrightarrow{\tau} \mathrm{T}, n\left(\mathrm{M}, \mathrm{M}^{\prime}\right)[\mathrm{U}]}
$$

Activations

- Side effect of a complexation or a decomplexation
- By the use of a fonction $\mathcal{A}:\left(\mathrm{A}_{\mathrm{r}}, m\right) \mapsto n$

$$
\xrightarrow[{m(\mathrm{M})[\mathrm{S}] \xrightarrow{\mathrm{M} \xrightarrow{\mathrm{~A}_{x}^{\times}} \mathrm{M}^{\prime}} n\left(\mathrm{~A}_{\mathrm{r}}, m\right)=} n]{\mathcal{A}(\mathrm{S}]}
$$

$$
\frac{\mathrm{M} \xrightarrow{\mathrm{~A}_{x}^{\times}} \mathrm{M}^{\prime} \mathrm{S} \xrightarrow{\mathrm{~B}_{x}^{\times}} \mathrm{S}^{\prime}}{\mathcal{A}\left(\mathrm{A}_{\mathrm{r}}, m\right)=n} \frac{\mathrm{M})[\mathrm{S}] \xrightarrow{\tau} n\left(\mathrm{M}^{\prime}\right)\left[\mathrm{S}^{\prime}\right]}{}
$$

Impact on the bisimulation

Proving a bisimilarity has become harder.

Impact on the bisimulation

Proving a bisimilarity has become harder．

Impact on the bisimulation

Proving a bisimilarity has become harder.

Contextual Bisimulation

A contextual bisimulation is a symmetric relation \mathfrak{R} between solutions such that $\mathrm{S} \mathfrak{R} T$ implies:

1. if $\mathrm{S} \xrightarrow{\tau} \mathrm{S}^{\prime}$ then $\mathrm{T} \xlongequal{\tau} \mathrm{T}^{\prime}$ and $\mathrm{S}^{\prime} \mathfrak{R} \mathrm{T}^{\prime}$
2. if $S \xrightarrow{A_{\mathrm{x}}^{\times}} S^{\prime}$ then $T \xrightarrow{A_{x}^{x}} T^{\prime}$ and $S^{\prime} \mathfrak{R} T^{\prime}$.
$S \approx_{c} T$ if $S \mathfrak{R T}$ for a contextual bisimulation \mathfrak{R}.

Contextual Bisimulation

A contextual bisimulation is a symmetric relation \mathfrak{R} between solutions such that $\mathrm{S} \mathfrak{R T}$ implies:

1. if $\mathrm{S} \xrightarrow{\tau} \mathrm{S}^{\prime}$ then $\mathrm{T} \xrightarrow{\tau} \mathrm{T}^{\prime}$ and $\mathrm{S}^{\prime} \mathfrak{R} \mathrm{T}^{\prime}$
2. if $S \xrightarrow{A_{x}^{x}} S^{\prime}$ then $T \xrightarrow{A_{x}^{x}} T^{\prime}$ and $S^{\prime} \Re T^{\prime}$.
3. if $S \xrightarrow{m} m(M)\left[S^{\prime \prime}\right] \| S^{\prime}$ then $T \xrightarrow{m} m\left(M^{\prime}\right)\left[\mathrm{T}^{\prime \prime}\right] \| \mathrm{T}^{\prime}$ and for every N, R, and n such that $\mathcal{F}(m, n)=p$ we have both

$$
\begin{aligned}
& -\left(\mathrm{S}^{\prime \prime}, p(\mathrm{M}, \mathrm{~N})\left[\mathrm{S}^{\prime}\right]\right) \mathfrak{R}\left(\mathrm{T}^{\prime \prime}, p\left(\mathrm{M}^{\prime}, \mathrm{N}\right)\left[\mathrm{T}^{\prime \prime}\right]\right) \\
& -\left(\mathrm{S}^{\prime}, p(\mathrm{M}, \mathrm{~N})\left[\mathrm{S}^{\prime \prime}, \mathrm{R}\right]\right) \mathfrak{R}\left(\mathrm{T}^{\prime}, p\left(\mathrm{M}^{\prime}, \mathrm{N}\right)\left[\mathrm{T}^{\prime \prime}, \mathrm{R}\right]\right)
\end{aligned}
$$

$\mathrm{S} \approx_{c} \mathrm{~T}$ if $\mathrm{S} \Re \mathrm{T}$ for a contextual bisimulation \mathfrak{R}.

Using The Contextual bisimulation

Countering the former attack

Using the contextual bisimulation

Countering the former attack

Using the contextual bisimulation

Countering the former attack

Using the contextual bisimulation

Countering the former attack

Perspective

Contribution :

- Attempt for integrating proteins and membranes
- Aim of representing biological systems
- Direct link between interactions between proteins and membranes activities

Gives a tool for:

- Abstracting from the molecular details
- Giving a fonctionnal meaning
- Modularity

PERSPECTIVE

- Molecular biology
- automating the search for equivalences

- extending the panel of technics for infering properties
- diversifying the kind of biological systems modellised
- Self-organisation
- Study of reversible behaviours
- Optimization

