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Analysing the dynamic of netwoks

Some features of the networks:

◮ Concurrency : parallel composition
◮ Mobility : dynamics of the connections, migration

Suitable theoretical framework: Process algebras

◮ Computing unit −→ process
◮ Emission/reception on channels
◮ Private name sharing

. . .π-calculus (Milner)

◮ Notion of compartment
◮ Locating the communications

. . .Mobile Ambient (Cardelli & Gordon)



An alternative

Applications:

◮ Self-organization phenomena
◮ Modeling of molecular biology

−→ Symmetry of the interactions: collisions

Reformulation of previous framework: κ-calcul, Brane calculi

◮ Protein → process
◮ Bound between proteins → sharing of a common name

Contributions: extension, integration



Framework

Starting from κ-calculus (with Vincent Danos)

1. Top-down approach: Synthesizing distributed programs from a
given specification:

◮ for trees
◮ for graphs

2. Exploring reversibility features:
◮ in the langage itself
◮ using reversible process algebra (with Jean Krivine)

3. Bottom-up approach: bioκ-calculus (with Cosimo Laneve)
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Collective behaviour

◮ Self-organizing: How a collective phenomenon may emerge from
multiple interactions (analysis and synthesis)

◮ Recurrent problem:

◮ Molecular biology (analysis)
◮ Genetic engineering (synthesis)
◮ Distributed robotics (synthesis)
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The syntax

Syntactic representation of graphs :

◮ Nodes = agents

◮ Edges = private names sharing

〈x〉 , 〈x , y〉 , 〈y〉becomes

Construction rules :

〈x〉 , 〈x , y〉 , 〈y〉 , 〈〉 ( )

becomes

(νz) 〈x〉 , 〈x , y , z〉 , 〈y〉 , 〈z〉



Formalisation of the problem

◮ Extraction of a core language:
〈x〉 , 〈x〉 , 〈〉 9 (νy)(〈x〉 , 〈x , y〉 , 〈y〉)
=⇒ restriction on synchronisation ability

◮ Expected property: equivalent behaviour



Formalisation of the problem

◮ Extraction of a core language:
〈x〉 , 〈x〉 , 〈〉 9 (νy)(〈x〉 , 〈x , y〉 , 〈y〉)
=⇒ restriction on synchronisation ability

◮ Expected property: equivalent behaviour

What does that mean ?

◮ Comparison of transitions

◮ Comparison of states

=⇒ Mathematical tool: bisimulation



Intuitive features of the algorithm

◮ Only one active agent by component.

◮ Local knowledge of the component’s structure.

◮ Each agent knows its role in the component.

◮ Propagation of the changes related to an interaction by the
use of a spanning tree.



Traduction of the reactions

Set of reactions :

◮ Connection between 2 disjoint complexes

◮ Cyclic connection

◮ Propagation updates

◮ Activity switch

◮ Mechanism to handle the deadlocks



Demo



Bottom-up approach

Problem: Extracting a functional meaning of sub-networks

◮ Several agents may interact at the same time by means of
several sites

– competition for resources (sites)
– concurrency of the interactions
– nondeterminism

◮ Interactions may involve simple agents (proteins) or complex
ones (compartments) and may cause small local changes or
more structural ones.

◮ The overall behaviour is deterministic in general.



Two different directions

Two different approaches:

◮ Based on π-calculus (Regev-Shapiro, Danos-Laneve): κ-calcul

◮ Based on Ambients (Cardelli): Brane Calculi

For modelling different biological systems:

◮ Signal transduction pathways, gene regulatory networks, . . .

◮ Molecular transport, virus infections, . . .



A language for proteins and membranes

Proteic complex:

1
a

b

c

1

1

2

2

32
3

a

a(1x + 2y + 3) ,b(1x + 2) ,
c(1 + 2 + 3y )

Compartment with a transmembrane receptor:

a
2

b1

membrane

1

a

a
3

inner membrane space

La(1 + 2 + 3x) M[b(1x )]



bioκ: The syntax

Solutions S:

S ::= solution

0 (empty solution)
a(σ) (protein)

mLM M[S] (compartment)
S ,S (group)
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bioκ: The syntax
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Well formedness constraints:

◮ constraint on the connections
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Some notations

• We write φ,ψ, · · · , for partial interfaces

• Simple interactions: complexations C and decomplexations D
between proteins

• Based on a local knowledge of the proteins: (a, i , φ, φ′)

Example: ((s, 1, , ) , (r, 1, 2̄, 2)) ∈ C

s(1 + 2 + 3̄) ,r(1 + 2̄ + 3) −→ s(1x + 2 + 3̄) ,r(1x + 2 + 3)



bioκ: The labelled transition system

The transition relation
µ

−→ is the least one satisfying the
reductions:

◮ semi-interactions

(a, i , φ, φ′) ∈ C(r)

a(i + φ+ σ)
ax

r−→ a(ix + φ′ + σ)

(a, i , φ, φ′) ∈ D(r)

a(ix + φ+ σ)
ax

r−→ a(i + φ′ + σ)

◮ interactions proteins-proteins

S
ax

r−→ S′ T
bx

r−→ T′

S ,T
τ

−→ S′
,T′

M
ax

r−→ M′ S
bx

r−→ S′

mLM M[S]
τ

−→ mLM′ M[S′]



bioκ: The labelled transition system

◮ Lifting to the context

S
µ

−→ S′

S ,T
µ

−→ S′
,T

M
µ

−→ M′

mLM M[S]
µ

−→ mLM′ M[S]

S
τ

−→ S′

mLM M[S]
τ

−→ mLM M[S′]



A tool to compare the systems

Some notations:

– S
τ

=⇒ S′ represents S
τ

−→
∗

S′

– S
µ

=⇒ S′, with µ 6= τ , represents S
τ

−→
∗ µ

−→
τ

−→
∗

S′

A (weak) bisimulation is a symmetric binary relation R between solutions
such that SRT implies:

1. if S
τ

−→ S′ then T
τ

=⇒ T′ and S′
R T′

2. if S
ax

r−→ S′ then T
ax

r=⇒ T′ and S′
R T′.

We write S ≈ T if SRT for some bisimulation R.



The black box

Theorem : The bisimulation associated to the labelled transition
system is a congruence.

Two solutions which are bisimilar can replace each other
independently of the context in which they are.
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The black box

Theorem : The bisimulation associated to the labelled transition
system is a congruence.

Two solutions which are bisimilar can replace each other
independently of the context in which they are.
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Fusions of membranes

• core-bioκ keeps the hierarchical structure of the solutions

• It is impossible to describe phenomena such as the fusion
between two endosomes :

esmLM M[S] , esmLN M[T] −→ esmLM ,N M[S ,T]

3
S

1 2 M
1 N

1
T

3

1 5

4

2

M
1

N
1

3
S

1 2
T

3

1 5

4

2

d



core bioκ with mreagents

The syntax of bioκ:

S ::= solution

0 (empty solution)
a(σ) (protein)

mLM M[S] (compartment)
S , S (group)

mLM M[S] || T (mreagent)



Fusions

By the use of a fonction F : (m,m′) = n

m ∈ F

mLM M[S]
m
−→ mLM M[S] || 0

S
µ

−→ mLM M[S′] || S′′

S ,T
µ

−→ mLM M[S′] || (S′′
,T)
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Fusions

By the use of a fonction F : (m,m′) = n

m ∈ F

mLM M[S]
m
−→ mLM M[S] || 0

S
µ

−→ mLM M[S′] || S′′

S ,T
µ

−→ mLM M[S′] || (S′′
,T)

Horizontal fusion
S

m
−→ mLM M[T] || U S′

m′

−→ m′LM′ M[T′] || U′

S ,S′
τ

−→ U ,U′
, nLM ,M′ M[T ,T′]

Vertical fusion
S

m
−→ mLM M[T] || U

m′LM′ M[S]
τ

−→ T , nLM ,M′ M[U]



Activations

◮ Side effect of a complexation or a decomplexation

◮ By the use of a fonction A : (ar,m) 7→ n

M
ax

r−→ M′ A(a
r
,m) = n

mLM M[S]
ax

r−→ nLM′ M[S]

M
ax

r−→ M′ S
bx

r−→ S′

A(a
r
,m) = n

mLM M[S]
τ

−→ nLM′ M[S′]



Impact on the bisimulation

Proving a bisimilarity has become harder.
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Contextual bisimulation

A contextual bisimulation is a symmetric relation R between solutions
such that SRT implies:

1. if S
τ

−→ S′ then T
τ

=⇒ T′ and S′
R T′

2. if S
ax

r−→ S′ then T
ax

r=⇒ T′ and S′
R T′.

S ≈c T if SRT for a contextual bisimulation R.



Contextual bisimulation

A contextual bisimulation is a symmetric relation R between solutions
such that SRT implies:

1. if S
τ

−→ S′ then T
τ

=⇒ T′ and S′
R T′

2. if S
ax

r−→ S′ then T
ax

r=⇒ T′ and S′
R T′.

3. if S
m
−→ mLM M[S′′] || S′ then T

m
=⇒ mLM′ M[T′′] || T′ and

for every N, R, and n such that F(m, n) = p we have both

–
(

S′′
, pLM ,N M[S′]

)

R

(

T′′
, pLM′

,N M[T′′]
)

–
(

S′
, pLM ,N M[S′′

,R]
)

R

(

T′
, pLM′

,N M[T′′
,R]

)

.

S ≈c T if SRT for a contextual bisimulation R.



Using the contextual bisimulation

Countering the former attack
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Perspective

Contribution :

◮ Attempt for integrating proteins and membranes

◮ Aim of representing biological systems

◮ Direct link between interactions between proteins and
membranes activities

Gives a tool for:

◮ Abstracting from the molecular details

◮ Giving a fonctionnal meaning

◮ Modularity



Perspective

• Molecular biology

◮ automating the search for equivalences

Comparing biological networks

Equivalence

Same system
2 different scales

2 different systems

Abstraction Generic mechanisms

◮ extending the panel of technics for infering properties
◮ diversifying the kind of biological systems modellised

• Self-organisation

◮ Study of reversible behaviours
◮ Optimization
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