Logical modelling of the cell cycle in yeast and mammals

Adrien Fauré – Ph. D. Student under the co-supervision of

Denis Thieffry

IBDML

Marseilles – France

Andrea Ciliberto

IFOM Milano — Italy

Introduction

The **cell cycle** is at the center of many different research problematics: **cancer**, **development**, **differenciation**, **ageing**, **cloning**...

It is thus crucial to develop our understanding of the system, and a model is a necessary step, given the complexity.

The cell cycle

Molecular actors

Kohn (1999), Molecular Biology of the Cell 10, 2703-2734

The core oscillator

Tyson, J.J. and Novak, B. (2001). J. Theor. Biol. 210:249-263.

Logical modelling

• Qualitative

- Coarse-grained
- But good approximation
- Intuitive

• Simple

- Limited discrete parameter space
- Extension relatively easy
- Modular approach

Analytical tools

- Stable states, cyclic attractors
- circuit analysis

http://gin.univ-mrs.fr/GINsim/

state

transition

graph

Cell cycle GINsim

Priorities

Work in progress

Conclusic

Regulatory graph

• Nodes

- regulators (proteins...)
- discrete levels of expression
- Arcs
 - directed interactions

Logical parameters

 Rules directing the dynamics of the system

ıom		valeur	interactions actives		<<	cdh1 0 [1,Max] -
d	(NEA	1 E	1 E2F_0		~	Cdc20 0 [1,Max] -
14		1 E	2F_0 CycA_0		X	CycA 0 [1,Max] + E2E 0 [1,Max] +
max	1	1E	2F_0 cdh1_0			
basale		10	CycA_0 E2F_0 cdh1_0		-	HbcH10.0 [1 Max] -
		1E	2F_0 UbcH10_0			
	1	10	VrA 01lbrH10_0	-		KD 0 [1,Max] -

Adapted from Novak, B. and Tyson, J. J. (2004). J. Theor. Biol. 230:563-579.

Updating assumptions

Asynchronous

Synchronous

CycD Rb E2F CycE CycA p27 Cdc20 Cdh1 UbcH10 CycB

Asynchronous state transition graph

Cell cycle

GINsim

Priorities

Work in

progress

Conclusion

Cell cycle **GINsim** Priorities Work in orogress

Conclusion

Defining transition priorities

Both **synchronous** and **asynchronous** assumptions may generate **artifacts**:

synchronous: independant processes are coupled
artificial transitions
lack of precision.

asynchronous: temporal undetermination
artefactual pathways
cyclic attractor gets very large

Hence the need for an **intermediate** assumption.

Mixed (a)synchronous assumption and priorities

Use of two **assumptions** to build 2 x 2 priority classes:

1) synthesis rates slower than degradation rates

2 different priority classes

2) components regulated by the same mechanism are grouped in synchronous classes

synchronous versus asynchronous gene sets for each priority level

Cell cycle		Mixed (a)synchronous assumption and priorities					
GINsim	Rank	Туре	Transitions				
Priorities	1	Asynch.	CycD $\downarrow\uparrow$, Rb $\downarrow\uparrow$, p27 $\downarrow\uparrow$, Cdh1 \downarrow , E2F \downarrow , CycE \downarrow				
	1	Synch.	$CycA\downarrow$, $Cdc20\downarrow$, $UbcH10\downarrow$, $CycB\downarrow$				
Work in	2	Asynch.	$E2F^{\uparrow}, CycE^{\uparrow}, CycA^{\uparrow}, Cdc20^{\uparrow}$				
progress	2	Synch.	UbcH10 \uparrow , CycB \uparrow				
Conclusio	n						

Work in Progress

Development of a logical model of the **budding** yeast cell cycle (in collaboration with Andrea Ciliberto)

- Well-known system
- Large number of characterised mutants
- Existing ODE models focusing on specific parts of the cycle

Goal :

one single logical model integrating all different modules.

Conclusion

Though still very **simple**, our current models grasp the **main aspects** of the system – including **mass** in the yeast model.

The **priority system** allows us to reach the **appropriate temporal precision**, and thus develop more **detailed** and **expanded** models.

Prospects

•Models

- Yeast model
- Mammalian model
- Coupling of cell cycle with differenciation

•Analysis

- Functionality of the regulatory loops
- Model-checking
- Comparative analysis of different systems

Acknowledgements

IBDML Denis Thieffry Claudine Chaouiya Aurélien Naldi IFOM Andrea Ciliberto