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Abstract

Background

Cellular functions are regulated by complex webs of interactions that might be schematically

represented as networks. Two major examples are transcriptional regulatory networks,

describing the interactions among transcription factors and their targets, and protein-protein

interaction networks. Some patterns, dubbed motifs, have been found to be statistically

over-represented when biological networks are compared to randomized versions thereof.

Their function in vitro has been analyzed both experimentally and theoretically, but their functional role in vivo, that is,

within the full network, and the resulting evolutionary pressures remain largely to be examined.

http://oenone.net/papers
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Biological Network are Complex
They have a non-random topology.
They are resistant to random damages.
They are resistant to noise.
They are ... huge.
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How to deal with them?
Reductionist approach: let’s decompose 
them into tractable smaller elements.

Two approaches: motifs and modules.
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Network Motifs
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Engineering
Repetitive 
structure

Given task of 
signal processing

=
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What about biological networks?
• ‘Signal’ could be gene activity level
• ‘Circuits’ could be gene regulatory networks
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Repeated subgraphs have been found 
• In gene regulatory networks
• In protein interaction networks

Feed-Forward Loop Single Input Module Dense Overlapping Regulons

... ...

...

They are over-represented when 
compared to randomized networks.
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motifs in networks representing a broad range

of natural phenomena.
We started with networks where the inter-

actions between nodes are represented by di-

rected edges (Fig. 1A). Each network was

scanned for all possible n-node subgraphs (in

the present study, n ! 3 and 4), and the number

of occurrences of each subgraph was recorded.

Each network contains numerous types of n-

node subgraphs (Fig. 1B). To focus on those

that are likely to be important, we compared the

real network to suitably randomized networks

(12–16) and only selected patterns appearing in

the real network at numbers significantly higher

than those in the randomized networks (Fig. 2).

For a stringent comparison, we used random-

ized networks that have the same single-node

characteristics as does the real network: Each

node in the randomized networks has the same

number of incoming and outgoing edges as the

corresponding node has in the real network.

The comparison to this randomized ensemble

accounts for patterns that appear only because

of the single-node characteristics of the network

(e.g., the presence of nodes with a large number

of edges). Furthermore, the randomized net-

works used to calculate the significance of n-

node subgraphs were generated to preserve the

same number of appearances of all (n – 1)-node

subgraphs as in the real network (17, 18). This

ensures that a high significance was not as-

signed to a pattern only because it has a highly

significant subpattern. The “network motifs”

are those patterns for which the probability P of

appearing in a randomized network an equal or

greater number of times than in the real network

is lower than a cutoff value (here P ! 0.01).

Patterns that are functionally important but not

statistically significant could exist, which

would be missed by our approach.
We applied the algorithm to several net-

works from biochemistry (transcriptional gene

regulation), ecology (food webs), neurobiology

(neuron connectivity), and engineering (elec-

tronic circuits, World Wide Web). The network

motifs found are shown in Table 1. Transcrip-

tion networks are biochemical networks re-

sponsible for regulating the expression of genes

in cells (11, 19). These are directed graphs, in

which the nodes represent genes (Fig. 1A).

Edges are directed from a gene that encodes for

a transcription factor protein to a gene transcrip-

tionally regulated by that transcription factor.

We analyzed the two best characterized tran-

scriptional regulation networks, corresponding

to organisms from different kingdoms: a eu-

karyote (the yeast Saccharomyces cerevisiae)

(20) and a bacterium (Escherichia coli) (11,

19). The two transcription networks show the

same motifs: a three-node motif termed “feed-

forward loop” (11) and a four-node motif

termed “bi-fan.” These motifs appear numerous

times in each network (Table 1), in nonhomolo-

gous gene systems that perform diverse biolog-

ical functions. The number of times they appear

is more than 10 standard deviations greater than

their mean number of appearances in random-

ized networks. Only these subgraphs, of the 13

possible different three-node subgraphs (Fig.

1B) and 199 different four-node subgraphs, are

significant and are therefore considered net-

work motifs. Many other three- and four-node

subgraphs recur throughout the networks, but at

numbers that are less than the mean plus 2

standard deviations of their appearance in ran-

domized networks.
We next applied the algorithm to ecosystem

food webs (21, 22), in which nodes represent

groups of species. Edges are directed from a

node representing a predator to the node repre-

senting its prey. We analyzed data collected by

different groups at seven distinct ecosystems

(22), including both aquatic and terrestrial hab-

itats. Each of the food webs displayed one or

two three-node network motifs and one to five

four-node network motifs. One can define the

“consensus motifs” as the motifs shared by

networks of a given type. Five of the seven food

webs shared one three-node motif, and all seven

shared one four-node motif (Table 1). In con-

trast to the three-node motif (termed “three

chain”), the three-node feedforward loop was

underrepresented in the food webs. This sug-

gests that direct interactions between species at

a separation of two layers [as in the case of

omnivores (23)] are selected against. The bi-

parallel motif indicates that two species that are

prey of the same predator both tend to share the

same prey. Both network motifs may thus rep-

resent general tendencies of food webs (21, 22).

We next studied the neuronal connectivity

network of the nematode Caenorhabditis ele-

gans (24). Nodes represent neurons (or neuron

Fig. 2. Schematic view of network motif detection. Network motifs are patterns
that recur much

more frequently (A) in the real network than (B) in an ensemble of randomize
d networks. Each

node in the randomized networks has the same number of incoming and outgoi
ng edges as does

the corresponding node in the real network. Red dashed lines indicate edges that
participate in the

feedforward loop motif, which occurs five times in the real network.
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Fig. 3. Concentration C of
the feedforward loop motif
in real and randomized
subnetworks of the E. coli
transcription network (11).
C is the number of appear-
ances of the motif divided
by the total number of ap-
pearances of all connected
three-node subgraphs (Fig.
1B). Subnetworks of size S
were generated by choos-
ing a node at random and
adding to it nodes con-
nected by an incoming or
outgoing edge, until S
nodes were obtained, and
then including all of the
edges between these S
nodes present in the full
network. Each of the sub-
networks was randomized
(17, 18) (shown are mean and SD of 400 subnetworks of each size).

R E P O R T S

www.sciencemag.org SCIENCE VOL 298 25 OCTOBER 2002
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Simple and intuitive hypothesis of how biological 
networks are structured to process information.

Detailed dynamic models of motifs have been 
proposed in silico (mainly FFLs).

But ...
Are they real building blocks of biological 
systems? Are motifs biologically relevant?

Numerous algorithms have been proposed to 
efficiently search for motifs in any network.
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II.2 II.3 II.4

III.1 III.2 III.3 III.4

III.6 III.7 III.8

II.1

III.5

Step 1: Identification of ‘rich’ network motifs
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Step 2. Phylogenetic study

Functional interactions between genes 
should correspond to a selective pressure 
that preserves this interaction.

Biologist’s claim:

Evaluation in five yeast species.
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Step 3. Functional study

Identified motifs instances must play a 
key role in the regulation of biological 
processes.

Biologist’s claim:

Evaluation in five well known systems.
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PDR1

FLR1

HXT11
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Pleiotropic drug resistance system

• Pdr1 and Pdr3 respond to different signals
• They’re never active at the same time
• No evidence of cooperativity on the targets

> These motifs do not exist in practice.
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Biases 1 & 2

Network motifs do not exist in isolation
• pdr3 have its own regulation schedule, which 
destroy any property these FFL could have

Most network representations don’t distinguish 
linear from non-linear interactions
• pdr1 and pdr3 don’t cooperate on their targets

18Thursday, November 22, 2007



ACE2

CDC6

ADA2

GCN4

NGG1

INO1

RTG3

SUC2

ARG80

ARG81

MCM1

UME6

ARG1

ARG3

ARG5,6

ARG8

CAR1

CAR2

BAS1

PHO2

ADE1

ADE12

ADE13

ADE17

ADE2

ADE3ADE4

ADE5,7

ADE6

ADE8

HIS4

HIS7

CAD1

TPS1
TPS2

TPS3

YML100W

CAT8

FBP1

CBF1

MET16

MET17

MET2MET28

MET3

MET4

CCR4

CDC39

POP2

CDC28

CLB1

CLB2

CLN1

CLN2

FAR1

SWI5

CDC47

CDC46

CLN3

CRZ1

CYC8

MIG1

NRG1

TUP1

CYC1

HUG1

IME1

STA1

SUP35

YLR256W

DAL80

CAN1

DAL2

DAL3

DAL4

DAL7

DUR1,2

DUR3

GAP1

GDH1

DEH1

PUT1

PUT2

PUT4

UGA1

DAL81

DAL82
DAL1

ECI1
DCI1

FAS1

FAS2

GAL11

GAL4

PGD1

ROX3

GAL1
GAL10

GAL7

RPO21

GAL80

GCR1

RAP1

ADH1
CDC19

ENO1

ENO2

PDC1

PGK1

GLN3

HAP4

HAP5

KGD1

KGD2

LPD1

SOD2

YBL021CYGL237C

HCM1

ESP1

PDS1

HIR1

SNF2

SNF5

SWI3

HOP1

RED1

HSF1

SKN7

HSP82

SIS1

SSA1

IDH1

IDH2

IME2

MER1

REC114

SPO11

SPO13

SPS2

INO2

INO4

ACC1

CHO1

CHO2

CKI1

HNM1

ITR1

OPI3

PHO5
PHO4

MBP1

SWI6

CDC21

CDC9

CLB5

CLB6

POL1

STE12

YCL066W

BAR1

MF(ALPHA)1

MF(ALPHA)2

MFA1

MFA2

STE2

STE3

STE6

SWI4

MET14

DOG2

EMI2

ENA1

FES1

FPS1

GAL3

HXT1

HXT2

HXT3

HXT4

REG2

YEL070W

YFL054C

YKR075C

YLR042C

MIG2

MSN2

MSN4

PAF1

SPT16

PEX5

CAT2

POX1

PHO81
PHO85

PIP2

YCL067C

REB1

MOT1

RFX1

TOP1

RIM101

RME1

RNR1

RNR3

ROX1

ANB1

CYC7

ERG11

HEM13

RTG1

ACO1

CIT1

CIT2

SIN3

ADH2

STA2

SWI1

SKI8

PHO11

SNF6

REC102

HTA1

RTS2

TEC1

STE5

STE4

CTS1

PCL1

PCL2

COX4

COX6

CYT1

HEM1

HEM3

PET9

PTP1
QCR2

QCR8

RPM2

SDH3

SPR3

YKL148C

WSC2

YCR097W

PDR1

FLR1

HXT11

HXT9PDR10

PDR15

PDR3

PDR5

SNQ2

YOR1

ZAP1

MET

NCR

HYPHE

PDR

CCYCLE

19Thursday, November 22, 2007



The methionine pathway

• Cbf1 and Met28 have no regulatory activity
• The key regulatory mechanisms (loops) are 
not captured by the motifs found

> These motifs do not exist in practice.

Enzymes of the MET pathway
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MET28 MET30
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Bias 3

Most network representations don’t deal with 
transient objects, like protein complexes.
• cbf1, met4 and met28, while in complex, 
spuriously inherited the regulatory activity 
of met4, artificially creating motifs
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Poor nitrogen

sources

NCR-sensitive

genes
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DAL80

DEH1

The nitrogen catabolite repression system

• The key regulatory mechanisms (oscillation 
between Gln3p/Gat1p and Deh1p/Dal80p) 
are not captured by the motifs found

> This motif exists but have no role in practice.
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Not all over-represented motifs are significant.

Bias 4

• deh1p and dal80p are paralogs of an ancestor 
protein with homo-dimerization capability

• The duplication is too recent for the function of 
these two proteins to have diverged
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But motifs are statistically significant ... aren’t they?

Motifs do not seems to be biologically relevant. 
They either do not exist or have no role.

Conclusion
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• Artzy-Randrup Y, Fleishman SJ, Ben-Tal N, Stone L 
Comment on "Network motifs: simple building blocks of 
complex networks" and "Superfamilies of evolved and  
designed networks" Science 2004, 305:1107 

• Banzhaf  W and Kuo P D, Network motifs in natural and 
artificial transcriptional regulatory networks Journal of 
Biological Physics and Chemistry, 4 (2004) pp. 85 - 92

Counter argument
The existence of over-represented subgraphs is a 
consequence of the network growth, without need 
of any hypothesis of selection along evolution.
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Take-home messages
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Beware of artifacts from 
network representation!

• Networks are static, i.e. they superpose all existing 
(and not necessarily co-occurring) interactions

• Networks are not rich enough to represent non-
linearities and transient objects. Examples of gene 
regulation logic and protein complexes

Don’t rely too much on the topology of networks.
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Beware of statistical 
significance!

Don’t rely too much on the abundance of 
an object to judge of its relevance. Ask the 
question of the biological relevance.

• Biological systems are not designed, they’re 
the result of trial-and-errors over billions of 
years. They contains lot of structures, that are 
not necessarily (or no more) of use.
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Alternative to motifs?

The idea of small structures performing signal-
processing tasks is actually good.

We biologists expect such tasks to be performed: 
signal conversion, memorization, amplification, 
extinction, discretization, integration, etc.
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Idea
To make a clear separation between structure and 
function: distinguish tasks from implementations.

Implementations: the particular molecular 
mechanisms used to perform these tasks.
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New approach
We must look for tasks, not implementations.

Rationale
It have been shown that a single task can be 
implemented with many different mechanisms 
with distinct topologies.
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where well-described parts are assembled based on
predictions borne out of mathematical models of circuit
behavior [3–10]. However, recent work by François and
Hakim [11] offers a complementary in silico approach to
network design that incorporates evolution in a new
technique that mimics how cells themselves undergo
mutational selection.

Engineering genetic networks in vivo
Decades of research, starting with the ground-breaking
work of pioneers like François Jacob and Jacques Monod
[12], have elucidated the basic components and logic of
gene regulation. In conjunction with these efforts, and in
part owing to the vast amount of information gleaned from
ongoing work to decipher the functions of gene networks,
researchers are developing increasingly sophisticated
models of cellular networks. Together, these advances
have helped to foster the field of synthetic biology, in which
artificial circuits are constructed based on in silico
descriptions of network function in an attempt to achieve
a level of understanding that will enable the creation of
fully ‘programmable’ cells. Achieving this lofty goal
requires not only a detailed understanding of how simple
components interact within a network, but also an
understanding of how these networks interact within the
complex cellular environment. Despite these challenges,
recent studies have shown that predictable, albeit simple,
cell behavior is readily achievable.

Several simple genetic networks (ormodules) have been
constructed in vivo using a rational approach to artificial
gene-circuit design. Artificial networks, including feed-
back systems [6–8], toggle switches [4,9], oscillators [3,9]
and cell–cell communication systems [5,10], were con-
structed using predictive models that uncovered network
behavior and helped to guide experimental design. This
approach performed remarkably well, as demonstrated by
the success of circuit performance in vivo. However, a
limiting factor is the inability to predict precisely how a
circuit will function within the cellular environment
because of the enormous complexity of living organisms.
It seems that simple engineered networks require exten-
sive tinkering with their elementary components to obtain
the desired behavior in the face of unknown interactions
and the experimentally observed noise in gene expression
[13–15]. One way to simplify the task of artificial circuit

construction involves a combinatorial approach: isolated
components are assembled in vitro, and the resulting
networks are inserted into a cell in which circuit behaviors
can be identified [16]. This approach can circumvent the
tedious task of constructing one particular circuit to
perform a desired function by providing a multitude of
circuits spanning the range of available components and
behaviors. Although this method proved useful for the
creation of simple logic-gate networks [16], the require-
ments of large-scale screening techniques can prove
challenging when trying to create complex networks of
more diverse functions.

A method of construction that does not necessitate a
prior knowledge of the details of circuit functionwithin the
global cellular environment involves using directed
evolution – a process that takes advantage of the ability
of a cell to survive under selective pressure. Directed
evolution is often associated with techniques used to
improve protein function by DNA shuffling in vitro [17], as
well as to generate new functional nucleic acid sequences
such as aptamers and ribozymes [18]. Recently, an
approach involving directed evolution has been applied
to a rationally designed synthetic network in vivo [19]. In
this case, the circuit was already well described and
targeted mutation, together with screening based on
fluorescent reporter properties, was used to make a
non-functional circuit functional. This approach
involved a combination of rational circuit design and
evolution to improve performance. In this way, it might
serve to augment previous approaches that combine
predictive models with experiments to produce a network
with a particular function.

In silico evolution of genetic networks
François and Hakim [11] describe a procedure aimed to
reproduce in silico the feature that drives the design of
genetic network architectures in vivo: evolution. They
present a computational algorithm that creates small gene
networks as depicted in Figure 1. Their algorithm begins
with a collection of genes and proteins (accompanied by
deterministic rate equations describing their interactions)
that subsequently undergo alternate phases of mutational
‘growth’ and ‘selection’ to evolve into networks of a
specified function. The evolutionary process is repeated
until the desired networks are created. This approach

Figure 1. In silico evolution procedure of genetic networks as described by François and Hakim [11]. Genes and proteins are assembled and described according to their bio-
chemical reactions, forming a collection of networks. These networks then serve as the input to the iterative ‘growth’ and ‘selection’ procedure, where ‘n’ networks are
doubled through mutational growth and subsequently pruned (n ¼ 100). After successive rounds of ‘growth’ and ‘selection’, functional genetic modules of prescribed
behavior are created.
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Randomly evolve network 
structure and kinetic constants

Select those networks closer 
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Implementation of a toggle switch
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