Interaction graph, modules and large scale networks

A. Siegel, P. Veber, C. Guziolowski, M. Le Borgne

CNRS - IRISA

24 juin 2007

Modules?

A module exists by the question it is associated to

A module is a set of molecules and interactions that satisfy a specific property

Biological criteria

- Biological modules : nodes belongs to the same biological process
- Spacial modules : elements share the same cellular localization
- Time-scale modules : nodes have the same time-scale dynamics

Dynamical criteria

- Time-scale modules : nodes have the same time-scale dynamics
- In-out systems : Their exists a monotonicity relation in the variable behavior (monotonic systems)
- Circuit analysis : Loops that have an influence on the bistability or homeostasie of the system
- Path analysis : Decomposition into minimal paths (Flux Balance Analysis)

Several methods from dynamical systems that can be applied to networks with a few hundreds nodes

Static analysis and modules

Main object of the talk
An analysis of shift equilibria allows to identify meaninful modules in large scale networks

Used data and models

- Interaction graph : $A \rightarrow B$ if A induces a change in the production of B.
- Signed... : signed interactions are obtained by the reading of the litterature
- Or unsigned interactions : Chip-Chip experimentations or inference process provide unsigned interactions
- Qualitative variation datasets between two stationnary states: DNA Chip, experimental stress or mutant

Questions...

Asked by biologists

- Consistency between knowledge and data
- Corrections of the model ?
- Prediction of new information
- Variation for nonobserved products
- Proposition for the signs of interaction when unknown
- Key nodes
- For the validation of the model
- For the understanding of behaviors
- For the analysis of supplementary material (eQTL)

The main idea
To each question we can associate a type of module that can be computed quite efficiently

Method : Setting constraints depending on the type of avalaible data

Variables

- signs of the variation of products $\Delta X(i, \eta)$ in each considered experimentation
(underlying hypothesis : data concern stationnary state shifts)
- signs of interactions $s(i \rightarrow k)$
(underlying restrictive hypothesis : every actor has a constant action on its target)

Constraints

- litterature knowledge set up the signs of some interactions
- qualitative data set up the sign of some variations
- General constraint : the variation of an internal product is explained by the variation of one of its predecessors

$$
\operatorname{sign}(\Delta X(i, \eta)) \simeq \sum_{k \neq i, k \rightarrow i} \operatorname{sign}(s(i \rightarrow k)) \times \operatorname{sign}(\Delta X(k, \eta))
$$

Example 1 : interaction signs are known

$$
\operatorname{sign}(\Delta X(i, \eta)) \simeq \sum_{k \neq i, k \rightarrow i} \operatorname{sign}(s(i \rightarrow k)) \times \operatorname{sign}(\Delta X(k, \eta))
$$

Usual sign rules and additional rules : + + = ? $\boldsymbol{+} \not \subset-$

- The variation of C is given by the variation of A
 $\operatorname{sign}(\Delta C) \approx \operatorname{sign}(\Delta A)$
- the variation of A is the opposite of the variation of B $\operatorname{sign}(\Delta A) \approx-\operatorname{sign}(\Delta B)$
the variation of D must be equal to the variation of $A,-B$ or $-C$.

$$
\operatorname{sign}(\Delta D) \approx \operatorname{sign}(\Delta A)-\operatorname{sign}(\Delta B)-\operatorname{sign}(\Delta C)
$$

A possible solution to the system :
There are 4 sets of solutions (among 16

```
\[
\begin{aligned}
& +\approx+ \\
& +\approx-(-) \\
& +\approx+-(-)-(+)
\end{aligned}
\]
```

sign}(\DeltaC)\approx\operatorname{sign}(\DeltaA

```
sign}(\DeltaC)\approx\operatorname{sign}(\DeltaA
\operatorname{sign}(\DeltaA)\approx-\operatorname{sign}(\DeltaB)
\operatorname{sign}(\DeltaA)\approx-\operatorname{sign}(\DeltaB)
\operatorname{sign}(\DeltaD)\approx\operatorname{sign}(\DeltaA)-\operatorname{sign}(\DeltaB)-\operatorname{sign}(\DeltaC)
```

```
\operatorname{sign}(\DeltaD)\approx\operatorname{sign}(\DeltaA)-\operatorname{sign}(\DeltaB)-\operatorname{sign}(\DeltaC)
```

```

\section*{Example 2 : interaction signs are not known}

\[
\begin{aligned}
& \operatorname{sign}(\Delta A) \simeq \operatorname{sign}(C \rightarrow A) \operatorname{sign}(\Delta C) \\
& \operatorname{sign}(\Delta A)=+ \\
& \operatorname{sign}(\Delta C)=-
\end{aligned}
\]
```

$\operatorname{sign}\left(\Delta A^{(1)}\right) \simeq \operatorname{sign}(C \rightarrow A) \operatorname{sign}\left(\Delta C^{(1)}\right)$
$\operatorname{sign}\left(\Delta A^{(2)}\right) \simeq \operatorname{sign}(B \rightarrow A) \operatorname{sign}\left(\Delta B^{(2)}\right)$
$\operatorname{sign}\left(\Delta A^{(1)}\right)=+$
$\operatorname{sign}\left(\Delta C^{(1)}\right)=-$
$\operatorname{sign}\left(\Delta A^{(2)}\right)=+$
$\operatorname{sign}\left(\Delta B^{(2)}\right)=-$

```
\(\operatorname{sign}\left(\Delta A^{(1)}\right) \simeq \operatorname{sign}(C \rightarrow A) \operatorname{sign}\left(\Delta C^{(1)}\right)\)
\(\operatorname{sign}\left(\Delta A^{(2)}\right) \simeq \operatorname{sign}(B \rightarrow A) \operatorname{sign}\left(\Delta B^{(2)}\right)\)
\(\operatorname{sign}\left(\Delta A^{(3)}\right) \simeq \operatorname{sign}(C \rightarrow A) \operatorname{sign}\left(\Delta C^{(3)}\right)\)
\(\operatorname{sign}\left(\Delta A^{(3)}\right) \simeq \operatorname{sign}(B \rightarrow A) \operatorname{sign}\left(\Delta B^{(3)}\right)\)
\(\operatorname{sign}\left(\Delta A^{(1)}\right)=+\)
\(\operatorname{sign}\left(\Delta C^{(1)}\right)=-\)
\(\operatorname{sign}\left(\Delta A^{(2)}\right)=+\)
\(\operatorname{sign}\left(\Delta B^{(2)}\right)=-\)
\(\operatorname{sign}\left(\Delta B^{(3)}\right)=+\)
\(\operatorname{sign}\left(\Delta C^{(3)}\right)=-\)

\section*{Studying constraints}

Biological questions raise technical duties on systems
- Solving systems
- Eliminating variables
- Reducing systems
- Isolating subsystems

Two mains tools to realize these tasks
- Enumeration of solutions by Decision Diagrams (Pyquali)
- Compact representation of the solutions in \(\{+,-\}\)
- Elimination of variables
- Efficient for systems of at most 400 variables.
- Solver for constraints expressed in Answer Set Programming (Clasp)
- Provides one solution for a given set of constraints.
- Very efficient with thousands of variables.

\section*{Question 1 : consistency}
- Biological question Are the different pieces of information coherent with each other?
- Computer scientist question Do the system of constraint admit at least a solution?
- Solution Write an ASP program and check for the existence of a solution
- Alternative solution Check wether the system of equations has a solution with Decision Diagrams

Example : the network of transcriptional interactions for E. Coli given by Regulon DB is not internally coherent.
- Large scale network with hierarchical structure ( \(87 \%\) of genes are regulated by \(13 \%\) )
- 160 doubled signed interactions
- 1100 constaints, 1258 variables
\begin{tabular}{|l|r|}
\hline Number of nodes & 1258 \\
Number of interactions & 2526 \\
Nodes without successor & 1101 \\
Nodes with more than 80 successors & 7 \\
protein complex & 4 \\
\hline
\end{tabular}

\section*{Underlying modules}

\section*{Core of a system}

The core of a biological system described by its interaction graph is the smallest subgraph such that the full system of constraints admits a solution iff the constraints generated by the subgraph admit a solution
- Computation of an approximation of the graph Keep cycles of the interaction graph and their predecessors
- Used by Kauffman and Peterson to study S. Cerevisiae network.
- Concretely Recursively remove edges and nodes that do not constraint the system
- Interest The search for solutions by decision diagrams becomes possible

Morality : The core of a system contains its dynamics. The rest is static.

\section*{Underlying modules}

\section*{Examples}
- E. Coli network reduces from 1258 nodes to 105 nodes and 183 interactions. The central connected component contains only 28 nodes and 57 edges.
- E. Coli network and 43 stationnary phase experimental data reduces from 1258 to 148 nodes and 388 interactions
- S. Cervisiae assuming that the signs of interactions are known. Reduces from 2419 nodes and 4344 interactions to 31 nodes and 52 interactions
- S. Cervisiae with no interaction sign No reduction is possible

\section*{Question 2 : Correcting a system}
- Biological question When I have contradicting data and knowledge, what should I change?
- Origin of errors
- Errors in experimental data or knowledge
- Missing interaction between nodes
- Non-constant signed action between an actor and its target
- (Missing node)
- Computer scientist question What is the minimal set of equations that raise inconsistency?

\section*{Underlying modules}

An inconsistency module is a minimal subset of equations such that the remaining equations are consistent.

\section*{Strategy for computation}
- Decision diagrams Recursively remove systems of size 1, 2, 3..; that are internally inconsistent in order to obtain a consistency system.
- ASP Look for a minimal set of corrections to the inconsistent module.

\section*{Example : E. Coli (step 1)}

\section*{Automatic finding of} inconsistent system (no

\[
\begin{align*}
& I H F \approx i h f A+i h f B  \tag{1}\\
& i h f A \approx-I H F  \tag{2}\\
& i h f B \approx-I H F \tag{3}
\end{align*}
\]
\begin{tabular}{cccc}
\multicolumn{3}{l}{ solution) } & \\
\hline ihfA & ihfB & IHF & Conflict \\
+ & + & + & \((2),(3)\) \\
+ & + & - & \((1)\) \\
+ & - & + & \((1)\) \\
+ & - & - & \((1)\) \\
- & + & + & \((1)\) \\
- & + & - & \((1)\) \\
- & - & + & \((1)\) \\
- & - & - & \((2),(3)\) \\
\hline
\end{tabular}

Manual curated answer : Adding new interactions (sigma factors)

\begin{tabular}{|c|c|c|}
\hline IHF & \(\approx\) & ihf \(A+i h f B\) \\
\hline ihfA & \(\approx\) & \(-I H F+r p o D+r p o s\) \\
\hline ihfB & \(\approx\) & \(-I H F+r p o D+r p o S\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|}
\hline Protein & Gene & Function \\
\hline\(\sigma^{70}\) & rpoD & Transcribes most genes in growing cells \\
\(\sigma^{38}\) & rpoS & The starvation/stationary phase sigma-factor \\
\(\sigma^{28}\) & rpoF & The flagellar sigma-factor \\
\(\sigma^{32}\) & rpoH & The heat shock sigma-factor \\
\(\sigma^{24}\) & rpoE & The extracytoplasmic stress sigma-factor \\
\(\sigma^{54}\) & rpoN & The nitrogen-limitation sigma-factor \\
\(\sigma^{19}\) & fecl & The ferric citrate sigma-factor \\
\hline
\end{tabular}

Consistent system (18 solutions
\begin{tabular}{ccccc} 
among 32) & & & & \\
\hline rpoD & rpoS & ihfA & ihfB & IHF \\
+ & + & + & + & + \\
+ & + & + & - & + \\
+ & + & - & + & + \\
- & - & - & - & - \\
- & - & - & + & - \\
- & - & + & - & - \\
\hline\(+/-\) & \(-/+\) & + & + & + \\
\(+/-\) & \(-/+\) & + & - & + \\
\(+/-\) & \(-/+\) & + & - & - \\
\(+/-\) & \(-/+\) & - & + & + \\
\(+/-\) & \(-/+\) & - & + & - \\
\(+/-\) & \(-/+\) & - & - & - \\
\hline
\end{tabular}

\section*{Example : E. Coli (step 2)}

\section*{New (consistent) model and data on exponential phase}
\begin{tabular}{|l|r|}
\hline Number of nodes & 1529 \\
Number of interactions & 3883 \\
Nodes without successor & 1365 \\
Nodes with more than 80 successors & 10 \\
sigma-factors & 6 \\
protein complex & 4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline gene & effect & gene & effect & gene & effect & gene & effect & gene & effect \\
\hline acnA & + & csiE & + & gadC & + & osmB & + & recF & + \\
\hline acrA & \(+\) & cspD & + & hmp & + & osmE & \(+\) & rob & + \\
\hline adhE & + & dnaN & + & hns & + & osmY & + & sdaA & - \\
\hline appB & + & dppA & + & hyaA & + & otsA & + & sohB & - \\
\hline appC & + & fic & + & ihfA & - & otsB & + & treA & + \\
\hline appY & + & gabP & + & infB & - & polA & + & yeiL & + \\
\hline blc & + & gadA & + & Irp & + & proP & + & yfiD & + \\
\hline bolA & + & gadB & + & mpl & + & proX & + & yihl & - \\
\hline
\end{tabular}

Model and data are inconsistent!
Correction algorithm. There was a mistake on data provided by RegulonDB Good variations : ihfA \(=+\) and \(\operatorname{ihfB}=+\) (confirmed by the litterature)

\section*{Example : S. Cervisiae}

\section*{Several unsigned networks for S. Cervisiae}
- Core of S. Cervisiae [31 nodes, 52 edges]
- Unsigned interactions between transcription factors (from Chip-Chip analyses or promoteur inference) [70/83 nodes, 96/131 edges]
- Full interaction network given by Chip-Chip analyses (Lee et al, 2002) [2419 nodes 4344 edges]

\section*{Several datasets}
- 15 quite complete stress experimental datasets (YDB)
- About 300 mutant experimentations (Hugues et al, 2000)

All unsigned networks are inconsistent with the datasets

\section*{Example : S. Cervisiae (correction)}

We identify inconsistent subsets for each network

\begin{tabular}{|c|c|c|c|c|cc|c|}
\hline Interaction network & Nodes & Edges & \begin{tabular}{c} 
Number \\
Exp.
\end{tabular} & \begin{tabular}{c} 
Input/Output \\
obs. simult.
\end{tabular} & \begin{tabular}{c} 
MBM Int. \\
Typel
\end{tabular} & \begin{tabular}{c} 
MBM Int. \\
Typell,III,IV
\end{tabular} \\
\hline \begin{tabular}{c} 
(A) Core of \\
Lee network
\end{tabular} & 31 & 52 & 15 & 46 & 3 & \((5.7 \%)\) & 0 \\
\hline \begin{tabular}{c} 
(B) Extended \\
Lee network
\end{tabular} & 70 & 96 & 15 & 70 & 7 & \((7.2 \%)\) & 0 \\
\hline (C) Inferred network & 83 & 131 & 14 & 91 & 4 & \((3 \%)\) & 0 \\
\hline (D) Global network & 2419 & 4344 & 14 & 2270 & 281 & \((6.5 \%)\) & 463 \\
\hline
\end{tabular}

Obtaining the largest block? To be done

\section*{Question 3 : Predictions of a system}
- Biological question What do the knowledge and data predict on nonobserved signed and/or products?
- Computer scientist question What are the variables whose sign is the same in all solutions?

\section*{Associated module : hard component}

The hard component of a system of constraints is the set of variables that are affected with the same sign in all the solutions to the constraints.
- Decision Diagram Explicitly study the tree of solutions (limited size of nodes)
- ASP For each variable, check whether the systems \(\mathcal{S}\) and \((X=+)\) and \(S\) and \((X=-)\) have a solution (30 seconds for each node).

Example : E. Coli and 40 stationnary phase data Allows to infer 401 new variations (that is, 26 \% of the network)

\section*{Large scale network with large core}
- Decision Diagrams cannot be used and constraint solvers are too long.
- The good strategy : decompose into submodules
- Partition the set of equations into subsets of equations that share the minimum variables

Obtained by ASP computing
- For each set of variables, use decision diagrams to eliminate variables outside the considered set
- Solve the remaining constraints.

\section*{Unsigned E. Coli graph and predictability of signs}
- Large consistent graph : 1529 nodes and 3802 edges.
- Core of the graph : 28 nodes and 57 edges.
- Random production of consistent sets of signs of variations that simulate random experimental datasets

\section*{How many signs can we predict from a given set of observations? \\ \(\mathrm{n} 1=608 \mathrm{n} 2=811 \mathrm{n} 3=2383 \mathrm{pm}=0.049\)}

- A maximum of \(40,7 \%\) of the graph can be infered.
- In average, 30 experimental datasets are enough to infer \(30 \%\) of the network.
- 600 signs can be infered from a unique suitable dataset.
- 800 signs can be infered with a probability 0.05 .

- A maximum of \(47,3 \%\) of the graph can be infered.
- In average, 100 experimental datasets are enough to infer \(30 \%\) of the network.
- Not all observations have equivalent impact on sign inference

\section*{Example : S. Cervisiae}
- About \(15 \%\) of unsigned networks are inconsistent
- About \(15 \%\) of the remaining unsigned interactions can be infered from 15 datasets.


\section*{Question 4 : Key nodes?}

\section*{Validation power}
- Biological question What are the most important 15 nodes to be observed to ensure that my model is good?
- Computer scientist question What si the group of 15 nodes that belongs to the minimal number of consistent solutions?
- Computation To be done (Decision Diagram + ASP)

\section*{Prediction power}
- Biological question What are the most important 15 nodes to be observed to have the most important influence on the network?
- Computer scientist question What is the group of 15 nodes that have the most important hard component whatever the consistent signs we consider?
- Computation To be done (Decision Diagram + ASP)

\section*{Conclusions}
- Many questions asked by biologists can be solved by using a static approach and constraints solvers
- Each question is associated with a class of modules that can often be computed
- Some of these modules are intrinsicly dynamical and other are static
- More than the size of the network, the important thing is the size of the reduced module associated to a question.```

