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1. Abstraction in Systems Biology

Models are built in Systems Biology with two contradictory perspectives :

1) Models for representing knowledge : the more concrete the better

detailed mechanistic reaction models (SBML), gene ontologies, protein

functions, protein interactions, structures ...

2) Models for making predictions : the more abstract the better.

schematic reaction models (SBML), variable elimination, approximations,

stationary states, influence graph ...

These perspectives can be reconciled by organizing models into hierarchies

of abstractions.

“To understand a system is not to know everything about it but to know

abstraction levels that are sufficient for answering questions about it”
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The Theory of Abstract Interpretation

In this setting [Cousot Cousot 77], a domain is a lattice D(⊑,⊥,⊤,⊔,⊓)

where ⊑ is the “information loss” ordering.

Often just a power-set P(S)(⊆, ∅,S,∪,∩) ordered by set inclusion.
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The Theory of Abstract Interpretation

In this setting [Cousot Cousot 77], a domain is a lattice D(⊑,⊥,⊤,⊔,⊓)

where ⊑ is the “information loss” ordering.

A Galois connection C →α A between two lattices C and A is defined by

two abstraction and concretization functions α : C → A and γ : A → C that

are monotonic:

• ∀ x, y ∈ C x ⊑C y ⇒ α(x) ⊑A α(y),

• ∀ x, y ∈ A x ⊑A y ⇒ γ(x) ⊑C γ(y),

and are adjoint:

• ∀c ∈ C, ∀y ∈ A : x ⊑C γ(y)⇔ α(x) ⊑A y.

If γ ◦ α is the identity, the abstraction α loses no information, and C and A

are isomorphic from the information standpoint (although α may be not

onto and γ not one-to-one).
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Properties of Galois Connections

1. γ ◦ α is extensive (i.e. x ⊑C γ ◦ α(x)) and represents the information

lost by the abstraction;

2. α ◦ γ is contracting (i.e. α ◦ γ(y) ⊑A y);

3. γ ◦ α is the identity iff γ is onto iff α is one-to-one.

4. α preserves ⊔, and γ preserves ⊓;

5. γ(a) = max α−1(↓ a) = ⊔α−1(↓ a)

6. α(c) = min γ−1(↑ c) = ⊓γ−1(↑ c)

where ↓ a = {b | b ⊑ a} and ↑ a = {b | a ⊑ b}.

It is equivalent in the definition of Galois connections to replace the

condition of adjointness by conditions 1 and 2,

or by condition 5 which also entails the monotonicity of γ.
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Systems Biology Markup Language SBML Models

Formally, the concrete domain of reaction models is the powerset of all

possible reaction rules ordered by set inclusion :

Def. 1 Given a finite set M of molecule names, the universe of reactions

is the set of rules

R = {e for S=>S′ | e is a kinetic expression,

and S and S′ are solutions of molecules in M}.

The domain of SBML reaction models is CR = (P(R),⊆).
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Systems Biology Markup Language SBML Models

Formally, the concrete domain of reaction models is the powerset of all

possible reaction rules ordered by set inclusion :

Def. 2 Given a finite set M of molecule names, the universe of reactions

is the set of rules

R = {e for S=>S′ | e is a kinetic expression,

and S and S′ are solutions of molecules in M}.

The domain of SBML reaction models is CR = (P(R),⊆).

In the SBML exchange format, no semantics are defined.

In BIOCHAM, three semantics are considered:

1. boolean : non-deterministic asynchronous transition system

2. differential : ODE (or hybrid system)

3. stochastic : continuous time Markov chain.
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Stochastic Semantics Domain

Def. 3 Let a discrete state be a vector of integers of dimension |M|. The

universe S of stochastic transitions is the set of triplets (Si, Sj, τ) where Si

and Sj are discrete states and τ ∈ R
+ is a weight for the transition.

The domain of stochastic transitions is DS = (P(S),⊆).
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Stochastic Semantics Domain

Def. 4 Let a discrete state be a vector of integers of dimension |M|. The

universe S of stochastic transitions is the set of triplets (Si, Sj, τ) where Si

and Sj are discrete states and τ ∈ R
+ is a weight for the transition.

The domain of stochastic transitions is DS = (P(S),⊆).

An element s of the domain precisely defines a Markov chain, where the

probability pij of transition from state Si to Sj is obtained by normalizing

the reaction rate τi,j =
∑

(Si,Sj ,τ)∈s τ in pij =
τij

P

(Si,Sk,τ)∈s τ
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Stochastic Semantics Domain

Def. 5 Let a discrete state be a vector of integers of dimension |M|. The

universe S of stochastic transitions is the set of triplets (Si, Sj, τ) where Si

and Sj are discrete states and τ ∈ R
+ is a weight for the transition.

The domain of stochastic transitions is DS = (P(S),⊆).

An element s of the domain precisely defines a Markov chain, where the

probability pij of transition from state Si to Sj is obtained by normalizing

the reaction rate τi,j =
∑

(Si,Sj ,τ)∈s τ in pij =
τij

P

(Si,Sk,τ)∈s τ

Proposition 6 Let αRS : CR → DS be the function associating to a

reaction model the state transition graph labelled with the τi,j’s. Let

γRS(s) = ∪αRS
−1(↓ s). CR

−→αRS

←−γRS
DS is a Galois connection.

Remark that αRS is not one-to-one nor onto
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Discrete Semantics

Def. 7 The universe D of discrete transitions is the set of pairs of discrete

states. The domain of discrete transitions is DD = (P(D),⊆).

The discrete semantics is the classical Petri net semantics of reaction

models [RML93ismb,SHK06bmcbi,Chaouiya07bioinfo,GHL07cmsb].
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Discrete Semantics

Def. 8 The universe D of discrete transitions is the set of pairs of discrete

states. The domain of discrete transitions is DD = (P(D),⊆).

The discrete semantics is the classical Petri net semantics of reaction

models [RML93ismb,SHK06bmcbi,Chaouiya07bioinfo,GHL07cmsb].

Classical Petri net analysis tools can be used for the analysis of reaction

models at this abstraction level. For instance, the elementary mode analysis

of metabolic networks [SPM02bioinfo] has been shown in [ZS03insilicobio]

to be equivalent to the classical analysis of Petri nets by T-invariants.
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Discrete Semantics

Def. 9 The universe D of discrete transitions is the set of pairs of discrete

states. The domain of discrete transitions is DD = (P(D),⊆).

The discrete semantics is the classical Petri net semantics of reaction

models [RML93ismb,SHK06bmcbi,Chaouiya07bioinfo,GHL07cmsb].

Classical Petri net analysis tools can be used for the analysis of reaction

models at this abstraction level. For instance, the elementary mode analysis

of metabolic networks [SPM02bioinfo] has been shown in [ZS03insilicobio]

to be equivalent to the classical analysis of Petri nets by T-invariants.

Proposition 10 Let αSD : DS → DD be the function associating to a set

of stochastic transitions the discrete transitions obtained by projection on

the two first components, and γSD(d) = ∪αSD
−1(↓ d). DS

−→αSD

←−γSD
DD is a

Galois connection.

Remark that αSD is onto, but not one-to-one
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Boolean Semantics

Def. 11 Let a boolean state be a vector of booleans of dimension |M|

indicating the presence of each molecule in the state. The universe B of

boolean transitions is the set of pairs of boolean states.

The domain of boolean transitions is DB = (P(B),⊆).
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Boolean Semantics

Def. 12 Let a boolean state be a vector of booleans of dimension |M|

indicating the presence of each molecule in the state. The universe B of

boolean transitions is the set of pairs of boolean states.

The domain of boolean transitions is DB = (P(B),⊆).

Let αNB : N
|M| → B

|M| be the zero/non-zero abstraction (or threshold

abstraction) from the integers to the booleans, and its pointwise extension

from discrete states to boolean states.

Proposition 13 Let αDB : DD → DB be the set extension of αNB. Let

γDB(b) = ∪αDB
−1(↓ b). DD

−→αDB

←−γDB
DB is a Galois connection.

BIOCHAM boolean semantics SBB with the combinatorics of reactant

consumption

Theorem 14 For any reaction model R, αDB(αSD(αRS(R))) ⊆ SBB.

François Fages 18



Differential Semantics ?

The differential semantics of reaction models interprets a set of reaction

rules {ei for Si=>S′
i}i=1,...,n over molecular concentration variables

{x1, ..., xm}, by the following system of Ordinary Differential Equations

(ODE):

dxk/dt =
n∑

i=1

ri(xk) ∗ ei −
n∑

j=1

lj(xk) ∗ ej

where we recall that ri(xk) (resp. li) is the stoichiometric coefficient of xk

in the right (resp. left) member of rule i.
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Differential Semantics ?

The differential semantics of reaction models interprets a set of reaction

rules {ei for Si=>S′
i}i=1,...,n over molecular concentration variables

{x1, ..., xm}, by the following system of Ordinary Differential Equations

(ODE):

dxk/dt =
n∑

i=1

ri(xk) ∗ ei −
n∑

j=1

lj(xk) ∗ ej

where we recall that ri(xk) (resp. li) is the stoichiometric coefficient of xk

in the right (resp. left) member of rule i.

• synchronous semantics (evolution of variables in parallel)

• deterministic semantics (average behavior)

• not compatible with the rule set inclusion ordering

• infinite number of molecules

• infinitesimal time steps
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Influence Graph Abstraction from the Reaction Rule Syntax

AI = P({A activates B | A, B ∈M} ∪ {A inhibits B | A, B ∈M}).

The influence graph of a reaction model is defined by αRI : CR → AI

αRI(x) = {A inhibits B | ∃(ei for Si ⇒ S′
i) ∈ x,

li(A) > 0 and ri(B)− li(B) < 0}

∪{A activates B | ∃(ei for Si ⇒ S′
i) ∈ x,

li(A) > 0 and ri(B)− li(B) > 0}
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Influence Graph Abstraction form the Reaction Rule Syntax

AI = P({A activates B | A, B ∈M} ∪ {A inhibits B | A, B ∈M}).

The influence graph of a reaction model is defined by αRI : CR → AI

αRI(x) = {A inhibits B | ∃(ei for Si ⇒ S′
i) ∈ x,

li(A) > 0 and ri(B)− li(B) < 0}

∪{A activates B | ∃(ei for Si ⇒ S′
i) ∈ x,

li(A) > 0 and ri(B)− li(B) > 0}

αRI({A + B => C}) = { A inhibits B, A inhibits A, B inhibits A,

B inhibits B, A activates C, B activates C}

αRI({A = [C] => B}) = { C inhibits A, A inhibits A, A activates B, C activates B

αRI({A = [B] => }) = { B inhibits A, A inhibits A}

αRI({ = [B] => A}) = { B activates A}
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Influence Graph Abstraction from the Reaction Rule Syntax

AI = P({A activates B | A, B ∈M} ∪ {A inhibits B | A, B ∈M}).

The influence graph of a reaction model is defined by αRI : CR → AI

αRI(x) = {A inhibits B | ∃(ei for Si ⇒ S′
i) ∈ x,

li(A) > 0 and ri(B)− li(B) < 0}

∪{A activates B | ∃(ei for Si ⇒ S′
i) ∈ x,

li(A) > 0 and ri(B)− li(B) > 0}

Proposition 15 Let γRI(f) = ∪αRI
−1(↓ f), CR

−→αRI

←−γRI
AI is a Galois

connection.
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MAPK model: Reaction Graph →α Influence Graph

rule_1

RAF-RAFK

RAF

RAFK

rule_2rule_21

rule_3

RAFPH-RAF~{p1}

RAFPH

RAF~{p1}

rule_5

rule_7

rule_4 rule_22

MEK-RAF~{p1}

MEK

rule_6rule_24

MEK~{p1}-RAF~{p1}

MEK~{p1}

rule_9

rule_8rule_23

MEKPH-MEK~{p1}

MEKPH

rule_11

rule_10 rule_25

MEKPH-MEK~{p1,p2}

MEK~{p1,p2}

rule_13

rule_15

rule_12 rule_26

MAPK-MEK~{p1,p2}

MAPK

rule_14 rule_27

MAPK~{p1}-MEK~{p1,p2}

MAPK~{p1}

rule_17

rule_16 rule_28

MAPKPH-MAPK~{p1}

MAPKPH

rule_19

rule_18 rule_29

MAPKPH-MAPK~{p1,p2}

MAPK~{p1,p2}

rule_20rule_30

RAF

RAF-RAFK

RAFK RAF~{p1}

RAFPH

RAFPH-RAF~{p1}

MEK

MEK-RAF~{p1}

MEK~{p1}

MEK~{p1}-RAF~{p1}

MEKPH

MEKPH-MEK~{p1}

MEK~{p1,p2}

MEKPH-MEK~{p1,p2}

MAPK

MAPK-MEK~{p1,p2}

MAPK~{p1}

MAPK~{p1}-MEK~{p1,p2}

MAPKPH

MAPKPH-MAPK~{p1}

MAPK~{p1,p2}

MAPKPH-MAPK~{p1,p2}

Thomas’s conditions

for multistationarity

and oscillations apply here :
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P53-Mdm2: Reaction Graph →α Influence Graph

rule_1

p53

rule_2

rule_3

rule_13

p53~{u}

Mdm2::n

rule_6

rule_17 rule_19 rule_20

rule_4rule_5

p53~{uu}

rule_7rule_8

rule_9

DNAdam

rule_10

rule_11

Mdm2::c

rule_12rule_14

Mdm2~{p}::c

rule_15 rule_16 rule_18

p53

p53~{u}

Mdm2::c

p53~{uu}

Mdm2::n

Mdm2~{p}::c DNAdam

Inhitions hidden in the kinetic expressions are missed
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Influence Graph Abstraction from the Differential Semantics

Let us denote by β the mapping from CR to DJ that extracts ẋk and hence

the Jacobian from the kinetic expressions in the reaction rules.

Def. 16 The differential influence abstraction αJI : DJ → AI is the

function

αJI(x) = {A activates B | ∂ ˙xB/∂xA > 0 in some point of the space}

∪{A inhibits B | ∂ ˙xB/∂xA < 0 in some point of the space}

defined purely from the kinetic expressions... compatibility with the rules ?
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Monotonic Kinetics

Def. 17 A kinetic expression ei is monotonic w.r.t. a reaction model x iff

for all molecules xk we have

1. for all points of the space ∂ei/∂xk ≥ 0

2. if there exists a point in the space s.t. ∂ei/∂xk > 0 then li(xk) > 0

The mass action law kinetics, ei = k ∗Πxi
li , are monotonic

Hill’s kinetics (and Michaelis-Menten kinetics when n = 1)

ei = Vm ∗ xs
n/(Km + xs

n) where Vm = k ∗ (xe + xe ∗ xs/Km) for an

enzymatic reaction xs = [xe] => xp, are also monotonic.

Theorem 18 For any reaction model x with monotonic kinetics,

αJI ◦ β(x) ⊆ αRI(x).
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Precise Kinetics

Def. 19 A kinetic expression ei is precise w.r.t. a reaction model x iff for

all molecules xk we have

1. for all points of the space ∂ei/∂xk ≥ 0

2. there exists a point in the space s.t. ∂ei/∂xk > 0 iff li(xk) > 0

Note that precise implies monotonic.

Proposition 20 Mass action law, Michaelis Menten, and Hill kinetics are

precise.

Theorem 21 If x has precise kinetics and no molecule is at the same time

an activator and an inhibitor of the same target molecule, then

αRI(x) = αJI ◦ β(x).
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Conclusion

• The algebraic setting of abstract interpretation applies to

1. the organization of the syntactical, stochastic, discrete, and boolean

semantics of reaction models into a hierarchy of semantics

2. the mathematical definition of activation/inhibition influence graphs

either from the syntax of the rules, or from the differential semantics

• the differential semantics does not belong to that hierarchy of

semantics (with the rule set inclusion ordering)

• thm 1 for monotonic kinetics (like all standard kinetics), the syntactical

influences over-approximate the differential influences

• thm 2 for precise kinetics with no both activation and inhibition

influences, the syntactical and differential influences are the same

• the (easily computable) syntactical influences reveal hidden negative

feedback in purely forward reaction cascades like MAPK [Sepulchre 07]
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