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Dynamics of the Cell Cycle: Checkpoints, Sizers, and Timers
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ABSTRACT We have developed a generic mathematical model of a cell cycle signaling network in higher eukaryotes that can
be used to simulate both the G1/S and G2/M transitions. In our model, the positive feedback facilitated by CDC25 and wee1
causes bistability in cyclin-dependent kinase activity, whereas the negative feedback facilitated by SKP2 or anaphase-
promoting-complex turns this bistable behavior into limit cycle behavior. The cell cycle checkpoint is a Hopf bifurcation point.
These behaviors are coordinated by growth and division to maintain normal cell cycle and size homeostasis. This model
successfully reproduces sizer, timer, and the restriction point features of the eukaryotic cell cycle, in addition to other
experimental findings.

INTRODUCTION

Eukaryotic cells normally reside in a quiescent state, called

G0. To replicate, the cell reenters G1 and begins to

synthesize the factors necessary for further progression

through the cell cycle, as well as increase its mass in

preparation for the subsequent division. In late G1, a re-

striction point (R point) is present. Once the cell passes this

point, growth factors are no longer necessary to complete the

cycle (Zetterberg and Larsson, 1995). At the G1/S phase

transition, cells pass a checkpoint, which controls entry into

the S phase. Likewise, in G2, a second checkpoint exists that
ensures complete and accurate DNA replication has been

completed before progressing to the M phase. At the end of

the G2/M transition, the nucleus and cell divide, and the

daughter cells start a new cycle. The cycle time between

successive cell divisions in higher eukaryotes such as

Drosophila and frogs (Masui and Wang, 1998; Montagne

et al., 1999) as well as in yeast (Fantes, 1977; Sveiczer et al.,

1996), has been shown to depend on cell size, which under

normal conditions is divided into two phases, corresponding

to a sizer and timer. If the beginning cell size after the

previous division is smaller than a critical size, the time

required to grow to this critical size is called the sizer phase,
which is determined by birth size. When the cell grows to the

critical size, or if the birth cell size exceeds it, the time

required to complete division is called the timer phase, and is
almost constant irrespective of the birth size (Fantes, 1977;

Masui and Wang, 1998; Sveiczer et al., 1996).

Checkpoints, cell size, and the sizer and timer phases are

regulated by a signaling network of kinases and phospha-

tases, which is too complex for its underlying mechanisms to

be divined by intuition alone. Mathematical modeling and

nonlinear dynamics have been essential tools for gaining

insight into this most fundamental biological process. A

number of mathematical models (Aguda, 1999; Aguda and

Tang, 1999; Chen et al., 2000; Gardner et al., 1998;

Goldbeter, 1991; Hatzimanikatis et al., 1999; Novak and

Tyson, 1997; Obeyesekere et al., 1997; Qu et al., 2003;

Sveiczer et al., 2000; Thron, 1997; Tyson, 2002; Tyson et al.,

2001; Tyson and Novak, 2001) have been developed to

illuminate the workings of the cell cycle, based on vari-

ous dynamical mechanisms including limit cycle oscillation

(Goldbeter, 1991; Hatzimanikatis et al., 1999; Obeyesekere

et al., 1997), bistability (Chen et al., 2000; Sveiczer et al.,

2000; Thron, 1997; Tyson et al., 2001; Tyson and Novak,

2001), and transient processes (Aguda, 1999; Aguda and

Tang, 1999). (See Appendix A for glossary of the nonlinear

dynamics terminology used in this article, such as limit

cycle, bistability, and various bifurcations.) However, no

single dynamical mechanism on its own can account for

all features of the cell cycle, including checkpoints, sizers,

and timers. For example, as pointed out by Tyson (Tyson

and Novak, 2001), a pure limit cycle does not exhibit the

checkpoint feature or maintain homeostasis of cell size

during successive cycles. A pure bistable system has a clear

checkpoint feature, but does not produce repetitive cycles.

Therefore, how the cell coordinates its size, checkpoints, and

cell cycle progression in terms of these dynamical behaviors

is not completely understood, despite its critical importance.

In the past decade, Tyson and colleagues (Chen et al.,

2000; Novak and Tyson, 1993, 1997; Sveiczer et al., 2000;

Tyson et al., 2001; Tyson and Novak, 2001) developed

models for the yeast cell cycle and the Xenopus egg cell

cycle which have greatly improved our understanding of

cell cycle dynamics. Their models show a saddle-node

bifurcation for the G1/S transition checkpoint and a saddle-

node-loop bifurcation for the G2/M transition checkpoint

(Borisuk and Tyson, 1998; Tyson et al., 2001, 2002). They

proposed a cell cycle machine of growth-driven hysteresis in

a bistable system, with G1 representing the first, and S-G2-M

the second, of the two stable states. In their models, the

checkpoint is a saddle-node or saddle-node-loop bifurcation

point. Cell growth drives the cell past this point and thus lifts
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kinase activity from the lower stable steady state to the

higher stable steady state (from G1 to S-G2-M). Chromo-

some alignment drives the cell back to the low kinase activity

state from the high state (from S-G2-M to G1), completing

the cycle (Tyson et al., 2001, 2002; Tyson and Novak, 2001).

In their model, an elegant reconciliation between check-

points and repetitive cycling has been achieved. However,

other features, such as sizers and timers, remain to be

explained.

In this article, we formulated a mathematical model to

investigate the dynamics of cell cycle in higher eukaryotes,

toward the goal of determining whether additional features,

such as sizers and timers, could also be explained. To

simplify the analysis, we considered a generic signaling

module that can be used to represent either the G1/S or G2/M

transitions. We show that a Hopf bifurcation, rather than

a saddle-node bifurcation, is a natural candidate for check-

points in the cell cycle. Moreover, in this model, sizers and

timers arise naturally as features of this signaling network.

MATHEMATHICAL MODELING AND
NUMERICAL METHODS

In the cell cycle of higher eukaryotics, the most important cyclins are cyclin

A (CycA), cyclin B (CycB), and cyclin E (CycE), and the major cyclin-

dependent kinases (CDKs) are CDK1 and CDK2. Increased CycE:CDK2

activity marks the G1/S transition, whereas increased CycB:CDK1 activity

marks the G2/M transition. Although their functions are different, the

signaling networks regulating these activities are similar, as illustrated in

Fig. 1 and described below. Because of these similarities, we developed

a generic model that can be used to represent either the G1/S or G2/M

transition.

Modeling cyclin and CDK regulation

Cyclin and CDK bind, forming inactive Cyclin:CDK complex, with CDK

phosphorylated at Thr14, Tyr15, and Thr160 (for CDK2) or Thr161 (for

CDK1). CDC25 dephosphorylates both Thr14 and Tyr15 to activate the

kinase activity of the Cyclin:CDK complex. Wee1 phosphorylates both

Thr14 and Tyr15, inactivating this kinase activity. CDC25 must be

phosphorylated by active Cyclin:CDK complex to become active (Hoff-

mann et al., 1994; Solomon et al., 1990; Solomon and Kaldis, 1998), which

forms a positive feedback loop in Cyclin:CDK regulation. In contrast,

phosphorylation of wee1 inactivates wee1 activity. Wee1 phosphorylation is

also catalyzed by active Cyclin:CDK, which forms a double-negative

feedback loop, equivalent to a positive feedback loop.

We assume the protein synthesis rates and total CDK are constant

(Solomon et al., 1990). The degradation of cell cycle proteins occurs mainly

through ubiquitination by the 26S proteasome. At the G1/S transition, the

Skp1-CDC53/Cullin-F-box (SCF) complex catalyzes the phosphorylation-

dependent ubiquitination of G1 cyclins and other cell cycle proteins (Peters,

1998). Most F-box proteins are constantly synthesized and degraded in a cell

cycle-independent manner (Galan and Peter, 1999), but one of them, SKP2,

is expressed and phosphorylated in a cell cycle-dependent manner (Bilodeau

et al., 1999; Nakayama et al., 2001). At the G2/M transition, a protein called

anaphase-promoting-complex (APC) is activated and targets CycB for

ubiquitination (Morgan, 1999; Peters, 1998).

Active Cyclin:CDKmay be inhibited by binding to CDK inhibitor (CKI).

CKI bound to Cyclin:CDK is degradable only after being phosphorylated by

active Cyclin:CDK (Montagnoli et al., 1999). Its degradation frees the

bound Cyclin:CDK, allowing it to recycle, which forms another positive

feedback loop.

The system of differential equations for cyclin and Cyclin:CDK

regulation representing the above interactions is presented in Table 1, Eq.

1a. f(z) and g(w) in Eq. 1a represent the kinase activities of CDC25 and

wee1, respectively, and will be specified below. The constants ki (i ¼ 1, 16)

in Eq. 1a are the rate constants for the corresponding reaction steps shown in

Fig. 1.

Modeling CDC25 regulation

CDC25 has many functional phosphorylation sites, a number of which are

phosphorylated at the two cell cycle transitions (Hoffmann et al., 1993,

1994; Kumagai and Dunphy, 1992; Morris et al., 2000). To simplify the

dynamical analysis, we assume CDC25 has two phosphorylation sites, and is

synthesized at a constant rate (k8). All forms of CDC25 have degradation

rates proportional to their concentration with a constant coefficient k9. The

FIGURE 1 (A) Signaling networks for cyclin and CDK regulation, (B)
SKP2 regulation, and (C) APC/CDC20 regulation. The solid lines with

arrowheads indicate synthesis or degradation of a protein, or a biochemical

reaction step. The dashed lines indicate that the reaction is catalyzed by the

protein or protein complex connected to the line. The dotted lines indicate

the phosphorylation, and thus dephosphorylation may involve multiple

steps, as described in the text. Small gray spheres represent degraded protein

molecules.
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differential equations are listed in Table 1 as Eq. 1b. We set f(z) ¼ z2 for Eq.

1a, since our previous study (Qu et al., 2003) showed that two-site phos-

phorylation of CDC25 (i.e., f(z) ¼ z2) was necessary for interesting

dynamics to occur. Higher order phosphorylation caused quantitative but not

qualitative changes in the dynamics.

Modeling wee1 regulation

We assume wee1 is synthesized at a constant rate (k10), and both

unphosphorylated and phosphorylated forms have degradation rates

proportional to their concentrations (see reaction step 11 in Fig. 1). The

differential equations are listed in Table 1 as Eq. 1c. Since wee1 is

inactivated after phosphorylation, we set g(w) ¼ w0 for Eq. 1a, i.e., only the

unphosphorylated wee1 is active.

Modeling SKP2 or APC regulation

No detailed information exists on how SKP2 is regulated during the cell

cycle. It has been shown SKP2 is expressed and phosphorylated at G1/S

transition and throughout the S phase, and its phosphorylation is related to

CDK2 not CDK1 (Bilodeau et al., 1999). We assume that SKP2’s synthesis

or phosphorylation is regulated by CycE:CDK2 (Fig. 1 B). We also assume

SKP2 is degraded at a rate proportional to its concentration, so that d[SKP2]/

dt ¼ ah(x) � b[SKP2]. Here ah(x) defines the activation rate of SKP2,

which is determined by active Cyclin:CDK (x), and b[SKP2] defines the

inaction rate of SKP2. a and b are their respective rate constants. APC has to

be phosphorylated and bind to phosphorylated CDC20 to be active (Morgan

1999). Both phosphorylation of APC and CDC20 is catalyzed directly or

indirectly by active CDK1 (Fig. 1 C). We also assume active APC is

inactivated at a rate proportional to its concentration. Therefore, we can use

a similar differential equation for APC regulation, i.e., d[APC]/dt ¼ ah(x)-
b[APC]. By setting u ¼ b[SKP2]/a or u ¼ b[APC]/a, and t ¼ 1/b, we

obtain a common differential equation (Eq. 1d in Table 1) for both SKP2 and

active APC. In Eq. 1d, t represents the time constant of the reaction,

reflecting the time delay in the activation of SKP2 or APC. We use a Hill

equation formulation for h(x), with h(x) ¼ x2/(a2 1 x2) in Eq. 1d and used

a ¼ 4 for all simulations. Other choices of h(x) had quantitative effects, but

did not change the qualitative dynamics.

Modeling CKI regulation

The Cyclin:CDK:CKI complex has to be phosphorylated by active

Cyclin:CDK for degradation (Montagnoli et al., 1999; Vlach et al.,

1997). We assume CKI is synthesized at a constant rate (k12) and degraded

at a rate proportional to its concentration. The degradation of phosphor-

ylated CKI complexed with Cyclin:CDK is facilitated by SCF and also by

SKP2 (Carrano et al., 1999). The differential equations are listed in Table 1

as Eq. 1e.

Computer simulation

There are 13 differential equations and 31 parameters (see Table 1). We used

the fourth-order Runge-Kutta method to integrate Eq. 1 in Table 1 with

a timestep smaller than 0.002. Since our purpose is to investigate the

dynamics in general rather than to study the cell cycle dynamics for a specific

species, we keep all the variables and parameters dimensionless. However,

we searched a wide range of parameter spaces to detect different dynamics,

and we found only limit cycle and bistability. The parameter set illustrated in

Table 1 is typical for giving rise to such dynamics. However, since the

dimension of parameter space is very high, we cannot exclude the possibility

that other complex dynamics may be generated by this complicated sig-

naling network.

TABLE 1 Differential equations, variable definitions, and

default parameters

Differential equations for cyclin and CDK regulation
_yy ¼ k1 1 k4x1 � k3yc� ðk2 1 k2uuÞy
_xx1 ¼ k3yc1 ðk6 1 gðwÞÞx � k4x1 � ðk5 1 f ðzÞÞx1
_xx ¼ ðk5 1 f ðzÞÞx1 � ðk6 1 gðwÞÞx � ðk7 1 k7uuÞx � k14xi

1 k15ix 1 ðk16 1 k16uuÞixp; (1a)

where c ¼ (c0 � x � x1 � ix � ixp)/c0.

Differential equations for CDC25 regulation

_zz0 ¼ k8 1 k�z z1 � k1

z z0 � k9z0

_zz1 ¼ k1

z z0 1 k�z z2 � k�z z1 � k1

z z1 � k9z1

_zz2 ¼ k1

z z1 � k�z z2 � k9z2; (1b)

where k1z ¼ bz1czx is the rate constant for CDC25 phosphorylation and

k�z ¼ az is for dephosphorylation, bz is the rate constant for CDC25

phosphorylation not catalyzed by active Cyclin:CDK, and czx is for

phosphorylation catalyzed by active Cyclin:CDK.

Differential equations for wee1 regulation
_ww0 ¼ k10 1 k

�
ww1 � k

1

w w0 � k11w0

_ww1 ¼ k1

w w0 � k�ww1 � k11w1; (1c)

where k1w ¼ bw1cwx is the rate constant for wee1 phosphorylation and

k�w ¼ aw is for dephosphorylation, bw is the rate constant for wee1

phosphorylation not catalyzed by active Cyclin:CDK, and cwx is for

phosphorylation catalyzed by active Cyclin:CDK.

Differential equations for SKP2 or APC regulation

_uu ¼ ðhðxÞ � uÞ=t; where hðxÞ ¼ x2=ða2 1 x2Þ: (1d)

Differential equations for CKI regulation
_ii ¼ k12 � k13i� k14xi1 k15ix

_iix ¼ k14xi� k15ix 1 k�
i
ixp � k1

i
ix

_iixp ¼ k
1

i ix � k
�
i ixp � ðk16 1 k16uuÞixp; (1e)

where k1i ¼ bi1cix is the rate constant for CKI phosphorylation and

k�i ¼ ai is for dephosphorylation, bi is the rate constant for CKI

phosphorylation not catalyzed by active Cyclin:CDK, and cix is for

phosphorylation catalyzed by active Cyclin:CDK.

Variable definitions

y Free cyclin

x1 Inactive Cyclin:CDK complex

x Active Cyclin:CDK complex

c0 Total CDK

c Free CDK (normalized with c0)

z0 Unphosphorylated CDC25

z1 One-site phosphorylated CDC25

z2 Two-site phosphorylated CDC25

w0 Unphosphorylated wee1

w1 Phosphorylated wee1

u Active SKP2 or APC

i Free CKI

ix Cyclin:CDK:CKI complex with CKI

unphosphorylated

ixp Cyclin:CDK:CKI complex with CKI

phosphorylated

Default parameters

k1 ¼ 300, k2 ¼ 5, k3 ¼ k4 ¼ 30, k5 ¼ 0.1, k6 ¼ 1, k7 ¼ 10, k8 ¼ 100, k9 ¼ 1,

k10 ¼ 10, k11 ¼ 1, k12 ¼ 0, k13 ¼ 1, k14 ¼ 1, k15 ¼ 1, k16 ¼ 2, k2u ¼ 50, k7u
¼ 0, k16u ¼ 25, c0 ¼ 200, a ¼ 4, t ¼ 25, az ¼ aw ¼ ai ¼ 10, bz ¼ bw ¼ bi ¼
0.1, and cz ¼ cw ¼ ci ¼ 1.
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RESULTS

The dynamics of the signaling network

A detailed dynamical analysis of the signaling network

outlined schematically in Fig. 1, focusing on the roles of

cyclin synthesis and degradation, positive feedback facili-

tated by CDC25 and wee1, negative feedback facilitated by

SKP2 or APC, and CKI, is provided in Appendix B. We

summarize the main findings here, which are that the positive

feedback facilitated by CDC25 and wee1 causes bistability

in Cyclin:CDK complex activity, whereas the negative

feedback facilitated by SKP2 or APC turns this bistable

behavior into limit cycle behavior. The capability of the

negative feedback to turn the bistability into limit cycle

depends strongly on the strength of the feedback, whereas

the period of limit cycle depends strongly on the time delay

of negative feedback. The cell cycle checkpoint in this model

is thus a Hopf bifurcation point, rather than a saddle-node

bifurcation as in the models by Tyson and colleagues (Tyson

et al., 2001, 2002; Tyson and Novak, 2001). At present, there

is no decisive experimental evidence to determine which

types of bifurcation are responsible for the real cell cycle

checkpoint. However, our model also demonstrates features

that have not been clearly seen in prior models, including the

restriction point, sizer, and timer phases, as well as other

experimental findings described below. In our model, these

behaviors are coordinated by growth and division to main-

tain normal cell cycle and size homeostasis.

Checkpoints

Checkpoint dynamics of the cell cycle arise naturally in

the model described above. As noted above, the positive

feedback facilitated by CDC25 and wee1 phosphorylation by

active Cyclin:CDK causes bistability. However, when the

delayed negative feedback is in the system, the bistability

may be lost and converted to excitable and limit cycle

dynamics (see Figs. 6 and 7, Appendix B). Fig. 2 schemat-

ically summarizes the key cell cycle dynamics arising from

the mathematical model, as delineated by the detailed anal-

ysis provided in the Appendix B. There is a controlling pa-

rameter p (which could be cyclin synthesis rate k1, cyclin
degradation rate k2, CDK phosphorylation rate, cell size, or

combinations thereof, etc.) that controls the dynamics of

the system. Without the delayed negative feedback, the sys-

tem is bistable (dashed-dotted gray line). If p increases from

small-to-large, and then from large-to-small, a hysteresis

loop occurs. With delayed negative feedback added, how-

ever, a key new feature emerges. The steady state of the sys-

tem is no longer bistable, and becomes monotonic (solid and
dashed black lines). At low p, kinase activity is in a low

stable steady state (region I). As p increases, kinase activity

progresses successively through an excitable region (region
II), limit cycle region (region III), and finally a stable high

steady state (region IV). At the boundary of regions II and III,

a Hopf bifurcation (H1) occurs. Another Hopf bifurcation
(H2) occurs at the boundary of regions III and IV. In the limit

cycle region, the steady state is unstable (dashed black line).

Sizers and timers

Sizer and timer phases of the cell cycle also arise naturally in

this model, as follows. The first Hopf bifurcation, H1 (the

unfilled circle in Fig. 2), the checkpoint for transitions in the

cell cycle, is the starting point of the first phase. Before this

point, the kinase activity is low. If p is assumed to represent

cell size, then the time to reach H1 will be proportionate to

the starting cell size, defining the sizer phase of the cell cycle

time. Because of the delay in activation of SKP2 or APC, the

cell virtually sees a bistable system (and becomes a true

bistable system if cyclin degradation is blocked; see Sha

et al., 2003; Solomon et al., 1990). As p increases, however,

the cell passes the H1 bifurcation point. Kinase activity

increases sharply to the upper branch of the bistable solution

(see Fig. 2), after which activation of SKP2 or APC-

mediated ubiquitination brings the kinase activity back

down. Because the steady state is an unstable focus, the

kinase activity will oscillate as a limit cycle. The char-

acteristic period of this limit cycle is the subsequent ‘‘timer’’

phase of the cell cycle. If the cell divides before the second

cycle of rising kinase activity, then after division, p is low

and the cell returns to G1. This process repeats in the next

cycle. If p is even larger (as in the case of cyclin over-

expression or impaired cyclin degradation), kinase activity

will remain stable at the high level. Thus, in this model, the

natural checkpoint feature inherent in bistability is integrated

with the natural cycling time inherent in a limit cycle (or

excitable regime).

FIGURE 2 Schematic plot of cell cycle dynamics. The x-axis represents

the controlling parameter p (such as cyclin synthesis rate k1) that controls the

dynamics of the cell cycle. The y-axis represents the activated Cyclin:CDK

complex driving the cell cycle. The unfilled circle is the first Hopf

bifurcation point, which acts as the checkpoint in the cell cycle. See text for

further details.
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Comparison with experimental observations

Is the dynamical picture depicted in Fig. 2 applicable to the

cell cycle machinery? Here we compare our modeling results

to experimental observations.

Sizer and timer phases of the cell cycle

A cell must reach a proper size before it begins DNA

replication and mitosis. Cell size or nuclear-cytoplasm ratio

may influence synthesis rate and concentration of cell cycle

proteins. For simplicity, here we assume synthesis of cyclins

is proportional to cell size, and that the cell grows

exponentially, i.e.,

sðtÞ ¼ s0e
mt
; k1 ¼ ksðtÞ=½sc 1 sðtÞ�; (2)

where s0 is the cell size at beginning of the cycle, and m, k,

and sc are constants, with values of 0.003, 1000, and 40,

respectively, used in the simulation. Here we simulate Eqs. 1

and 2 using the G1/Smodel, but the same results should apply

when G1/S is coupled to G2/M. For simplicity, we define the

cell division occurring at the time point T before the second

rise in G1/S kinase activity, at which we set s0 ¼ s(T)/2.
Fig. 3 A shows cell size (s) and G1/S kinase activity (x)

versus time (t) during normal cell cycle. The cycle time is

;230 time units and the cell divides when it reaches a size of

12.4 units. In Fig. 3 B, we simulate a mutation which lowers

the synthesis rate of wee1 (decreasing k10 from 10 to 1 in the

model). The cell now divides at a smaller cell size of 5.8, but

maintains the same cycle time of 230. If we reduce k2 to

simulate the case of knocking out Cul1, the cell also divides

at a smaller size without changing the cycle time, which may

explain the observation that Cul1�/� mouse embryo is

smaller than wild-type mouse embryo (Dealy et al., 1999;

Wang et al., 1999).

In general, cells divide asymmetrically, and since the cycle

time depends on the size after division, the purely periodic

behavior shown in Fig. 3, A and B, is not observed ex-

perimentally. In Fig. 3 C, we show cycle time versus birth

size for our cell cycle model in its normal regime (Fig. 3 A)
and in the regime simulating the wee1 mutation (Fig. 3 B).
Cycle time decreases as birth size increases, and after

a critical birth size, the cycle time becomes size-independent.

This agrees with the classic observations in yeast (Fantes,

1977; Sveiczer et al., 1996) and frog eggs (Masui and Wang,

1998), showing that the first phase of the cell cycle is a sizer

and the second phase is a timer.

The R point at the G1/S transition

Experimentally, it has been shown that there is a point in the

G1/S phase called the R point. If serum is removed for a short

period, cells which have already passed the R point still

undergo mitosis, whereas cells which have not yet passed the

R point have a delay, which equals to the treatment time plus

an additional 8 h. Curiously, the cells that have not had

a delay in the first mitosis have the same delay in the second

mitosis and all cells resume their relative phase after the

second mitosis (Cooper, 1998; Zetterberg and Larsson,

1995). It was shown by Zetterberg and Larsson that all cells

stopped growing during the delay period in the first mitosis.

Here we simulate the R point phenomenon by stopping the

cell growth for a certain duration in the first mitosis. In Fig. 4,

two cells have a phase difference of 20 time units. At t ¼
1300, cell 1 has already passed the R point, whereas cell 2

has not. To simulate the effect of brief serum removal, we

then stop the cell growth for a duration of 50 time units. Cell

1 divides at t ¼ 1377, 242 time units after the previous

division, whereas cell 2 divides at t ¼ 1440, 285 time units

after the previous division. The phase difference is 63 time

units. At the next cycle, two cells have resumed their phase

difference of 20 time units, with the same cycle time of 230

units thereafter. Similar results were obtained using other

delays, either shorter or longer in duration.

DNA damage checkpoints

DNA damage at the G1/S transition arrests the cell cycle

in G1 by activating the signaling protein chk1, which

FIGURE 3 Cell size (above) and active Cyclin:CDK activity (below, both
arbitrary units) versus time. (A) Control. (B) The wee1 synthesis rate k10 was

reduced from 10 to 1 to simulate the wee1 mutation. Note the smaller cell

size. (C) Cycle time versus birth size for the control case with k10 ¼ 10

(unfilled circles) and for the wee1 mutation with k10¼ 1 (solid circles). Inset
shows how cell size s affects the value of the cyclin synthesis rate k1 at the

time of cell division, as in Eq. 2.
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phosphorylates CDC25A for degradation (Mailand et al.,

2000). At the G2/M checkpoint, the analogous signaling

protein responding to DNA damage is chk2, which inhibits

CDC25C by catalyzing its binding to 14-3-3 (Peng et al.,

1997). Our simulation shows (Fig. 7 F) that mimicking the

effects of chk1 or chk2 by either reducing the CDC25

synthesis rate (k8) or increasing the degradation rate (k9)
moves the H1 point into a much higher k1. Thus, at the same

cyclin synthesis rate k1, if there is DNA damage, the cell will

remain in G1 or G2.

Cyclin expression and degradation

Insufficient expression of CycE results in cell arrest in G1,

whereas overexpression of CycE leads to premature entry

into S phase (Ohtsubo et al., 1995), genomic instability

(Spruck et al., 1999), and tumorigenesis (Donnellan and

Chetty, 1999). Similar to overexpression of cyclin E, failure

of destruction of CycE is tumorigenic (Koepp et al., 2001).

With either overexpression or low degradation rate, CycE

activity became stabilized at a high level (Koepp et al., 2001;

Spruck et al., 1999). In our model (Fig. 7, B–D), insufficient
expression of cyclin (k1) keeps Cyclin:CDK activity very

low, i.e., corresponding to cell arrest in G1, whereas a normal

expression rate leads to limit cycle behavior. Overexpres-

sion or low degradation (k2 or k2u) of cyclin stabilizes

Cyclin:CDK at a high level. This also accounts for the

observation that overexpressing CycB or mutating APC

arrests cells at mitosis because of the stabilization of high

CycB:CDK1 activity.

CKI expression and degradation

Overexpression CKIs such as p27 causes G1 cell cycle arrest

(Sherr and Roberts, 1999), but can be rescued by over-

expression of cyclin E (Kwon and Nordin, 1997). Fig. 7 H
shows that these observations (stable low kinase activity due

to high k12, rescued by increasing cyclin synthesis rate k1) are
reproduced by our model.

DISCUSSION

We have developed a generic mathematical model of a cell

cycle signaling network that can be used to simulate both

the G1/S and G2/M transitions. Based on our investigations

of the dynamics caused by the positive feedback and the

negative feedback loops in this model, we have proposed

a mechanism for the cell cycle checkpoint control and cell

cycle progression that agrees well with experimental obser-

vations. We successfully simulated the R point, the sizer,

timer, and their resetting dynamics under simplified con-

ditions. Our major results are: 1), the positive feedback

facilitated by CDC25 and wee1 causes bistability in

Cyclin:CDK activity; 2), the negative feedback facilitated

by SKP2 or APC/CDC20 turns this bistable behavior into

limit cycle behavior; and 3), the G1 and G2 checkpoints are

thus Hopf bifurcation points, rather than saddle-node or

saddle-node-loop bifurcations. This feature thereby elegantly

integrates the natural checkpoint feature of bistability with

the natural timer feature of the limit cycle. These behaviors

are coordinated by growth and division to maintain the

normal cell cycle and size homeostasis.

Cell cycle dynamics

In our previous model of the G1/S control (Qu et al., 2003),

we showed that dynamics of bistability, limit cycle, and

excitable transients arise due to the positive feedback

between CDC25A and active CycE:CDK2. In this study,

we used a similar signaling network for cyclin and CDK

regulation, but added negative feedback. The negative

feedback converted a large bistable regime into a limit cycle

regime (Fig. 7, B and C). The main dynamical regimes are

low stable kinase activity state (which may be excitable),

limit cycle oscillation, and high stable kinase activity state.

Bistability may occur when the negative feedback is weak.

With the present model, we can reproduce many of the

experimental observations as they relate to checkpoints,

sizers, and timers within the cell cycle. Although we agree

with Tyson and colleagues (Tyson, 2002; Tyson and Novak,

2001) that a pure limit cycle cannot explain the dynamics of

the somatic cell cycle, we still propose a Hopf bifurcation,

rather than a saddle-node bifurcation, as the checkpoint

dynamics, which implies that limit cycle dynamics are hid-

den in the cell cycle.

An immediate question one may ask: what are the major

differences in dynamics between the present model and other

models, especially the models by Tyson’s group? Compared

to all the previous limit cycle models (Goldbeter, 1991;

Hatzimanikatis et al., 1999; Obeyesekere et al., 1997), our

model integrates virtual bistability into the limit cycle so that

the system exhibits both checkpoint and oscillatory capa-

FIGURE 4 Simulation of the R point experiment. At t ¼ 1300 (vertical

dotted line with arrow), one cell (solid line) passed the R point, but the other

(dashed line) had not. Growth for both cells was halted for a time period of 50

time units to simulate growth arrest after brief serum starvation. (A) Cell size

(s) versus time (t). Note that the first mitosis is delayed for the cell which did

not pass the R point, but the second mitosis is not delayed. (B) Active

Cyclin:CDK (x) versus time. Numbers indicate the division times of the two

cells.
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bilities. The major differences with the yeast (Chen et al.,

2000, Tyson and Novak, 2001; Tyson et al., 2001, 2002) and

Xenopus (Borisuk and Tyson, 1998) cell cycle models by

Tyson and colleagues is that, from a dynamics perspective,

their models propose checkpoint dynamics which are char-

acteristic of bistable systems, namely a saddle-node bifurca-

tion for theG1/S checkpoint and saddle-node-loop bifurcation

for the G2/M checkpoint. In our model, we propose Hopf

bifurcations, characteristic of limit cycle dynamics, for both

checkpoints. In addition, in their models (Tyson and Novak,

2001), the mechanisms of bistability and limit cycle oscilla-

tions are realized differently, via APC/CDH1 and APC/

CDC20, respectively. In our model, bistability is caused by

the positive feedback catalyzed by CDC25 and wee1, and

the limit cycle by the negative feedback facilitated by SKP2 or

APC/CDC20.

Do these dynamical differences advance our understand-

ing of cell cycle beyond the considerable insights already

gained from previous models, particularly those by Tyson

and colleagues? Building upon their seminal work, we have

shown that the sizer-timer relationships, as well as check-

point dynamics and other features, arise naturally from the

model proposed here. In the models by Tyson and col-

leagues (Tyson et al., 2001, 2002), the sizer phase ends at

the G2/M transition. However, experiments by Sveiczer et al.

(1996) showed that the sizer operated until early G2 for wild-

type yeast, but moved to G1/S transition for the wee1 mutant,

followed in both cases by a timer phase of ;100 min. Since

in their models (Tyson et al., 2001, 2002), the sizer operates

until the G2/M transition, it may not be possible to simulate

the sizer and timer behaviors shown in Sveiczer et al.’s

experiments. However, by proposing both checkpoints in our

model as Hopf bifurcations, the sizer can operate in either

G1/S or G2/M, which triggers the timer (limit cycle) when

the Hopf bifurcation is reached. Thus, either G1/S or G2/M

can control the sizer and timer phases. This is an appealing

feature of our model, since it allows experimental inter-

ventions in yeast known to shift the relationship between the

timer/sizer phases relative to G1/S and G2/M (Sveiczer et al.,

1996, 1999) to be more flexibly simulated.

Another potential advance in our proposed model is

in simulating sequential activation and inactivation of the

G1/S cyclins (E and A) followed by G2/M cyclins (A and B)

in higher eukaryotes (Pines, 1999), as well as in yeast

(Nasmyth, 1996). If each Cyclin:CDK signaling module has

the limit cycle dynamics with checkpoint capabilities as we

proposed, it is possible to couple them together, similarly to

Gonze and Goldbeter (2001), to achieve the sequential

activation and inactivation of the individual Cyclin:CDK

cascades and recapitulate the dynamics of ‘‘dominoes and

clocks’’ (Murray and Kirschner, 1989) and checkpoint

capabilities. In the models of Tyson and colleagues, since

the inactivation of the CDK activity is after M phase, re-

creating the sequential activation/inactivation of the indi-

vidual cascades may be more problematic.

In recent experiments by Sha et al. (2003) and Pomerening

et al. (2003), bistability was demonstrated in Xenopus laevis
egg extracts when cyclin B was made nondegradable and

controlled externally. Similar bistability was also observed

in yeast (Cross et al., 2002). These experiments elegantly

demonstrate that bistability due to a saddle-node bifurcation

can occur in a subsystem of the signaling network. Although

these findings were interpreted as key experimental sup-

port for the cell cycle dynamics proposed by Tyson and

colleagues, it is important to recognize that these findings

do not prove that there are saddle-node bifurcations and

hysteresis in the normally operating cell cycle. This is because

in the normally operating cell cycle, cyclin concentration is

not fixed as it was under these experimental conditions, but

is both synthesized and degraded, and therefore is a state

variable. This can cause the dynamics to change. For example,

in Figs. 2 and 6, we showed how bistability was changed to

a limit cycle due to cyclin degradation by negative feedback.

In other words, in the normally operating cell cycle with the

negative feedback present, a Hopf bifurcation instead of

a saddle-node bifurcation is atwork,whereas in the subsystem

without cyclin degradation, corresponding to the experimen-

tal conditions in the recent studies mentioned above (Cross

et al., 2002; Pomerening et al., 2003; Sha et al., 2003),

a saddle-node bifurcation occurs.

Dynamical and biological roles of cell cycle
protein regulation

Different cell cycle proteins and their regulatory processes

have distinct dynamical and biological roles. In our model,

sensitive nonlinear responses are required in the positive

feedback circuits between active Cyclin:CDK and CDC25 or

wee1 to give rise to bistability, and in the negative feedback

to promote excitable transients and limit cycles. We (Qu

et al., 2003) have previously suggested that multisite

phosphorylation might be the biological mechanism un-

derlying this required sensitive nonlinear response. For

simplicity, we assumed here that CDC25 has only two

phosphorylation sites and is active only when both sites are

phosphorylated directly or indirectly by active Cyclin:CDK.

CDC25 may be phosphorylated at many sites and is active in

either phosphorylated or unphosphorylated states (Hoffmann

et al., 1994; Solomon et al., 1990; Solomon and Kaldis,

1998). In addition, multisite phosphorylation of other

proteins, such as CDK, wee1, or CKI, etc., may have similar

dynamical consequences (Qu et al., 2003).

Increasing the synthesis rate of cell cycle promoters,

such as cyclin and CDC25, promotes the Hopf bifurcation,

whereas enhancing their degradation delays the Hopf bi-

furcation. Conversely, increasing the synthesis rate of the cell

cycle inhibitors, such as wee1 and CKI, delays the Hopf

bifurcation, whereas enhancing their degradation promotes

the Hopf bifurcation. Considering the Hopf bifurcation

point, H1, as the cell checkpoint, the dynamical roles of
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synthesis and degradation generally agree with experimental

observations.

The negative feedback facilitated by SKP2 or APC/

CDC20 plays a very important role in the cell cycle dy-

namics in our model, and is critical for cell cycle progres-

sion. The positive feedback creates a situation of an all-or-

none response (bistability) for the cell, allowing kinase

activity to increase rapidly. The delayed negative feedback

lets the kinase activity remain high for a certain period of

time, and then brings it back to the low level. The delay time

t has a big effect on the period of the limit cycle but little

effect on stability (Fig. 7 E). We used a sigmoidal function of

Hill coefficient 2 for h(x), but other sigmoidal or linear

increasing functions have the same qualitative effect.

Limitations

An important issue is whether the parameter values in

a complex model are biologically plausible and in a range

consistent with the dynamics proposed to represent the cell

cycle. Such validation is complicated, however, by the fact

that the cell cycle time in eukaryotes can vary from several

minutes to [24 h, suggesting that the kinetic parameters

values vary dramatically from species to species. For this

reason, we deliberately made our model dimensionless, so it

could be adapted to multiple species. From an evolutionary

standpoint, an attractive hypothesis is that the nonlinear

dynamics of the cell cycle may be relatively simple and

generic, so that cells of different species can divide at widely

different rates, yet operate using the same proven, reliable

dynamics to preserve the fidelity and safeguards of DNA

replication despite the complexity of the signaling network.

According to this reasoning, cells of different species would

use the same common dynamics, but vary the kinetics of key

parameters to adapt the cell cycle time appropriately. For

a given species, experimentally measured values of most

parameters are not available. Nevertheless, from the avail-

able data, we can assess the biological plausibility of our

model to a limited extent. For example, a previous ex-

perimental study (Solomon et al., 1990) has estimated the

total CDC2 in Xenopus oocyte cell cycle to be ;100 nM.

In this study, using total CDK of 200 nM (i.e., c0 ¼ 200 in

Eq. 1), the threshold of total cyclin which activates CDK

activity is ;60–70 nM (see Fig. 6 B). This threshold is

similar to the threshold observed in the recent experiments

(Pomerening et al., 2003; Sha et al., 2003) in Xenopus. In
addition, according to Felix et al. (1990), the delay of cyclin

B degradation in Xenopus is ;15 min at a sufficiently high

active CDC2 concentration. If we set t ¼ 15 min, the cycle

time of limit cycle in our model is;40–50 min (see Fig. 7 E),
which is roughly the correct cycle time of the Xenopus
oocyte in its first 11–12 cycles. Although our dimensionless

parameters were set in a range which gave rise to interesting

dynamics for the cell cycle machinery, by properly rescal-

ing our model, most parameter values agree well with the

parameter values estimated by Marlovits et al. (1998) from

experimental data, while preserving the same essential dy-

namics. Therefore, our model should be applicable to real

experimental data.

We have restricted our analysis to the dynamics of

a modular generic signaling network of higher eukaryotes

representing either G1/S or G2/M, but have yet to couple the

twomodules together to simulate the complete cell cycle. This

may limit the conclusions that we can draw about general cell

cycle dynamics, and it is possible that interesting new

dynamics will emerge in the complete, coupled network.

However, it is interesting that the repertoire of dynamical

behaviors exhibited by the network was relatively limited

over a wide range of parameter values. That is, we did not

observe complex behavior, such as chaos, or even higher-

FIGURE 5 Saddle-node and Hopf bifurcations leading

to bistability and limit cycles, respectively. (A) Schematic

illustration of a stable node (solid circle) and saddle point

(unfilled circle) in a two-variable space, such as a space of

active Cyclin:CDK and free cyclin. Arrows represent

trajectories. (B) Illustration of bistability and hysteresis in

a variable-parameter space. Solid lines and solid circles are

for stable nodes. Dashed line and unfilled circle are for

saddle points. (C) Schematic illustration of a stable focus

(solid circle), unstable focus (unfilled circle), and limit

cycle (thick large circle). A Hopf bifurcation occurs when

the steady state changes from a stable focus to an unstable

focus. (D) Hopf bifurcation and limit cycle in a variable-

parameter space. H1 is the first Hopf bifurcation point and

H2 is the second. Solid circles and solid lines indicate the

stable focus, and unfilled circle and dashed line the

unstable focus. Unfilled squares are the maxima of the

variable during limit cycle oscillation, and solid squares the

minima.
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order periodicity. However, the molecular network for cell

cycle is muchmore complex (Kohn, 1999, 2001) than the one

we presented in this article, and new dynamics may occur. In

addition, we have ignored the high degree of spatial

compartmentalization of the signaling network components

in the nucleus and cytoplasm of real cells, which adds another

layer of complexity to the possible dynamics. Nevertheless, it

is encouraging that the analysis of the generic robust signaling

module constructed here reproduces so many experimentally

observed features of the higher eukaryotic cell cycle.

APPENDIX A: NONLINEAR
DYNAMICS GLOSSARY

Steady state is a point at which the rate of change of all variables is zero.

For example, the steady state of Eq. 1 can be obtained by setting the

derivatives of all variables to zero and solving the resulted nonlinear

algebra equations. A system exactly positioned at a steady state will stay at

this state permanently. If the system returns to its steady state after a slight

perturbation, the steady state is stable; otherwise it is unstable. The

location and stability of steady states is determined by the parameter values

of the system; different types of steady states emerge in different parameter

ranges. Fig. 5, A and C, illustrate four types of steady states in a two-

dimensional variable space (such as in the active Cyclin:CDK (x) and free

cyclin (y) space)—a stable node and a saddle point (Fig. 5 A), and a stable

focus and an unstable focus (Fig. 5 C). When the steady state is a stable

node, all trajectories on the plane will approach this point. When the steady

state is saddle-point, it is unstable. Trajectories from one direction will be

attracted, but trajectories from another direction will be repelled, similar to

the trajectories of a ball placed on a real horse saddle (which rolls toward

the saddle’s center in the longitudinal direction, but rolls off the saddle in

the perpendicular direction). By changing a parameter, a steady state may

change from a stable node to a saddle, called saddle-node bifurcation.
Saddle-node bifurcations usually leads to bistability, a property of

a nonlinear system that exhibits two different stable steady states (stable

nodes, solid circles in Fig. 5 B) with an unstable steady state (saddle,

unfilled circle in Fig. 5 B) in between. In a bistable system, when

a parameter such as the cyclin synthesis rate k1 is increased, a sudden jump

occurs at the saddle-node bifurcation point (SN1 in Fig. 5 B) from one

stable node to another stable node (black arrows). However, as the

parameter is then decreased, the jump back (gray arrows in Fig. 5 B)

occurs at another saddle-node point (SN2) at a much lower parameter

value. This behavior is called hysteresis. When the steady state is a stable

focus, all trajectories spiral in and finally approach to the steady state. On

the contrary, when the steady state is an unstable focus, all trajectories

started close to the steady state spiral out. In a nonlinear system, they

usually approach an isolated closed trajectory surrounding the steady state,

called a stable limit cycle (Fig. 5 C). Trajectories started outside the limit

cycle also approach to it. As parameter changes, the steady state may

change from a stable focus to an unstable focus, leading to limit cycle

oscillation (Fig. 5, C and D). This transition is called Hopf bifurcation.
Limit cycle gives rise to clocklike cyclical behavior whereas bistability

resembles a toggle switch.

APPENDIX B: DETAILED DYNAMICAL ANALYSIS
OF THE CELL CYCLE MODEL

Dynamics caused by the positive feedback of
CDC25 and wee1

We first characterize the dynamics caused by the positive feedback

facilitated by CDC25 and wee1, without the presence of the negative

feedback or CKI (by setting k2u¼ 0, k7u¼ 0, and k12¼ 0 in Eq. 1). Similar to

our previous study (Qu et al., 2003), this positive feedback can cause

bistable, limit cycle, and excitable behaviors. Fig. 7 A shows that for this

signaling network, limit cycle behavior, with an oscillation period typically

\10 time units, occurs at low free cyclin degradation rate constant (k2),

whereas bistability occurs at high k2. In general, CDK activity is stable at

a low level (marked LOW in Fig. 7) when cyclin synthesis rate k1 is small,

and is stable at a high level (marked HIGH in Fig. 7) when k1 is large; limit

cycle or bistability occurs in the intermediate range depending on the value

of k2.

Dynamical role of negative feedback

We first add into the network the negative feedback mediated by

ubiquitination of free cyclin and/or cyclin complexed with CDK (via

SKP2 or APC), as well as by phosphorylation of complexed CDK by wee1,

without considering the effects of CKI (by setting k12 ¼ 0 in Eq. 1). The

immediate effect of this negative feedback is to convert a large region of the

triple steady-state bistability into a large region with a single steady state and

limit cycle dynamics. This is illustrated in Fig. 6 A and Fig. 7 B. Without the

negative feedback, for high cyclin degradation rate constant (k2 [ 2), the

steady state is a bistable system with two saddle-node bifurcations (SN1 and

SN2 in Fig. 6 A). When the negative feedback is added, the steady state

becomes monotonic and two Hopf bifurcations (H1 and H2 in Fig. 6 A)

occur, with a limit cycle region between them. Fig. 6 B plots free cyclin, total

FIGURE 6 (A) Steady states (lines) and limit cycle maxima/minima

(circles) of active Cyclin:CDK vs. cyclin synthesis rate k1 without the

negative feedback (gray lines) and with the negative feedback (black line

and circles). Solid lines are stable steady states; dashed lines are unstable

steady states. SN1 and SN2 mark the saddle-node bifurcations without

negative feedback present, and H1 and H2 mark the two Hopf bifurcations

with negative feedback present. (B) Active Cyclin:CDK (thick solid line),

free cyclin (dashed line), and total cyclin (thin solid line) versus time for k1
¼ 300 in the limit cycle regime shown in A. (C) Active Cyclin:CDK versus

time for k1 ¼ 150 in the excitable regime in A. At external stimulus was

applied at t ¼ 600 for a duration of 0.5 time units.
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Cyclin:CDK, and active Cyclin:CDK vs. time for the limit cycle regime

showing periodic behavior. At smaller cyclin synthesis rate k1, an excitable

region also exists before the limit cycle regime (Fig. 6 C).

Fig. 7 B shows the phase diagram and the oscillation period in the

parameter space of cyclin synthesis rate (k1) and degradation rate constant

(k2), with negative feedback restricted to free cyclin, illustrating a very large

region of limit cycle behavior (for comparison, the stability boundaries from

Fig. 7 A are re-plotted as dashed lines in Fig. 7 B). The bistable region has

disappeared, and the large limit cycle region occurs right next to it. The

oscillation period became shorter as cyclin degradation rate constant (k2)

decreased.

When the negative feedback works on both free cyclin and cyclin

complexed with CDK, the limit cycle region is even larger (Fig. 7 C). The

first Hopf bifurcation (H1, as in Fig. 6) is always close to SN1 and increases

to larger cyclin synthesis rates (larger k1 values) as free cyclin degradation

rate constant (k2) increases. If the negative feedback is restricted to cyclin

complexed with CDK, it also converts bistability to limit cycle behavior.

This conversion depends on the strength of the negative feedback, i.e., the

values of k2u and k7u. Fig. 7 D shows the phase diagram in k1–k2u space,

showing that for a given k2 value, limit cycle behavior occurs above

a threshold k2u value.

One interesting feature in this system is the effect of the time constant t in

Eq. 1d. As shown in Fig. 7 E, the time delay t of the negative feedback has

little effect on stability but controls the oscillation period. In contrast, Fig. 7 F

shows that increasing CDC25 levels by altering its synthesis or degradation

rates has a large effect on stability, although having little effect on the

oscillation period. As CDC25 increases (i.e. k8/k9 increases), limit cycle

behavior occurs at a smaller cyclin synthesis rate k1. Altering wee1 levels by

changing its synthesis rate (k10) has analogous effects, but in the opposite

direction, as shown in Fig. 7 G.

Dynamical role of CKI

Finally, we add CKI into the signaling network (Fig. 7 H). The major effect

of increasing CKI synthesis rate (k12) is to move the H1 boundary to a higher

cyclin synthesis rate k1 regime, until it fuses with the H2 boundary, and the

limit cycle disappears. In addition, as CKI increases, the oscillation period

also increases. A modeling study by Gardner et al. (1998), who studied the

general effects of inhibitory binding of cyclin, showed that it altered the

frequency and boundary of the limit cycle, similar to the predicted effects of

CKI in our model.
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FIGURE 7 Phase diagrams in two parameter planes, with other parameters fixed. LOW is stably low kinase activity, HIGH is stably high kinase activity, LC
is limit cycle oscillation, and BS is bistability. The oscillation period of limit cycle is color-coded in the limit cycle region. (A) In the plane of cyclin synthesis

rate (k1) and cyclin degradation rate constant (k2) without the negative feedback. (B) In the plane of cyclin synthesis rate (k1) and cyclin degradation rate

constant (k2) with negative feedback exerted only on free cyclin; k2u ¼ 50 and k7u ¼ 0. (C) In the plane of cyclin synthesis rate (k1) and cyclin degradation rate

constant (k2) with the negative feedback exerted on both free cyclin and active Cyclin:CDK complex; k2u¼ 25 and k7u¼ 50. (D) In the plane of cyclin synthesis
rate (k1) and rate constant of negative feedback (k2u). (E) In the plane of cyclin synthesis rate (k1) and time delay (t) for negative feedback. (F) In the plane of

cyclin synthesis rate (k1) and CDC25 synthesis and degradation ratio (k8/k9), by either changing CDC25 synthesis rate (k8) (LC in the colored area) or by

changing CDC25 degradation rate constant (k9) (LC between the two black lines). (G) In the plane of cyclin synthesis rate (k1) and wee1 synthesis rate (k10). (H)

In the plane of cyclin synthesis rate (k1) and CKI synthesis rate (k12). (D–G) With negative feedback exerted only on free cyclin; k2u¼ 50 and k7u¼ 0. A–G. No
CKI (k12 ¼ 0). (H) With CKI (k12[ 0). The color coding for the period of the limit cycle is shown as the color bar.
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