
Modeling Irregular Shape Placement Problems

with Regular Constraints

Mikael Z. Lagerkvist1 and Gilles Pesant2

1 ECS, ICT, KTH - Royal Institute of Technology, Sweden, zayenz@kth.se
2 École Polytechnique de Montréal, Montreal, Canada, Gilles.Pesant@polymtl.ca

Abstract. The regular constraint [5] is a powerful global constraint
with many possible uses. It was introduced to model certain common
constraints in rostering problems. In this paper we show how to use it to
model placement problems with irregular shapes. The technique is illus-
trated by solving Pentominoes and Solitaire Battleships. The efficiency of
the basic model is improved by projecting out irrelevant information. Ex-
perimental results on Pentomino packing benchmark instances indicate
that this simple approach can be competitive with specialized algorithms.
From the applications we can identify some areas for improvement in the
implementation of regular constraints.

1 Introduction

Constraint programming is a very powerful technique for solving combinatorial
problems. A key factor in harnessing this power is creating a model of the prob-
lem that is both clear and efficient. Creating such models is a hard process, and
often the goals of clarity and efficiency are in conflict. In this paper, we show
how the regular constraint [5] can be used to model placement problems with
potentially very irregular shapes.

Placement problems have been studied extensively, both in general and in the
context of constraint programming. The Pentominoes problem was among the
first solved using backtracking algorithms [6, 4]. In the context of constraint pro-
gramming, several specialized constraints have been proposed. The well-known
diffn constraint [3] specifies the placement of n-dimensional boxes. To generate
connected shapes of a given fixed size, the polyomino constraint [2] can be used.
For placing specific irregular shapes, a generalization of diffn called geost has
been proposed recently [1].

Contributions. The main contribution of this paper is the natural way irregular
shape placement problems can be modeled using regular expressions. The paper
also contributes two natural and clear models for problems that are hard to
model without special purpose constraints.

Plan of paper. The next section gives background on regular expressions and
the regular constraint. Section 3 describes how shape placement can be en-
coded using regular expressions. The following two sections describe solving the
Pentominoes and Solitaire Battleships problems. Section 6 concludes the paper.

2 Background

This section introduces the notions and concepts needed for this paper.

Regular languages. A regular expression (RE) is an expression R := R R | R∗ |
R|R | (R) | ǫ | X , representing concatenation, repetition, disjunction, grouping,
the empty language, and simple symbols respectively. The expression Rn is a
short-hand for the expression R concatenated n times.

A deterministic finite automaton (DFA) is a tuple 〈S,Val , T, q, A〉, where S

is a set of states, T : S × Val → S is a transition function, q ∈ S is the start
state, and A ⊆ S is a set of accepting states. A DFA matches a string x1, . . . , xn

iff there is a sequence of states q1, . . . , qn+1 such that q1 = q, qi+1 = T (qi, xi)
for i = 1, . . . , n, and qn+1 ∈ A.

The Regular constraint. Regular languages can be used as a specification lan-
guage for the regular constraint introduced by Pesant [5]. Specifying a regular
language can be done using both REs and DFAs, the choice depends on the par-
ticular constraint that is to be specified. If an RE is used, then it is translated
into a DFA for propagation. For efficiency, the DFA can be minimized.

The propagation algorithm for regular uses a data structure called a lay-

ered graph (LG). The LG for a regular constraint over variables x1, . . . , xn is
constructed by unfolding the DFA 〈S,Val , T, q, A〉 into a graph

〈

∪n+1

i=1 N i, E
〉

,
where layer N i contains states qi

1, . . . , q
i
m, and edges are between consecutive

layers following the DFA transitions, E = {
〈

qi
a, v, qi+1

b

〉

| qb ∈ T (qa, v), v ∈ Val}.

Propagation proceeds by finding the union of paths from q1 to any qn+1

f where
qf ∈ A. The set of paths has an edge between layers i and i + 1 if and only if
the edge value is valid for xi.

3 Shape Placement Encoded as a Regular Expression

Consider placing the shape in Figure 1(a) in the 4 by 4 grid shown in Figure 1(b).
In order to encode its placement as a string, we cut the grid into horizontal strips
corresponding to its rows and concatenate them (we could equivalently have
made vertical strips). Each square of the resulting sequence ABC. . . P takes value
1 if the shape overlaps it and value 0 otherwise. For example, placing the shape
on squares B, C, G, and K (Figure 1(c)) results in the string 0110001000100000.
This string and all other strings corresponding to placing that shape on the
grid belong to the language described by regular expression 0∗110310310∗: first
comes some number of 0’s, then two 1’s in a row (covering squares B and C in
our example placement), then come exactly three 0’s (not covering places D, E,
and F), and so on. The variable number of 0’s at the beginning and at the end
makes the expression match any placement of the shape in the grid.

There is one problem however, since it allows “placing” the shape on squares
D, E, I, and M (Figure 1(d)). That is, the shape may wrap around the grid.
To prohibit this, we add a new dummy-column to the grid, so that it looks

� �

�

�

(a) Shape to place

A B C D

E F G H

I J K L

M N O P

(b) Grid to place in

� �

�

�

(c) Possible placement of
shape.

�

�

�

�

(d) Erroneous placement
of shape.

A B C D Q

E F G H R

I J K L S

M N O P T

(e) Modified grid.

� �

�

�

(f) Shape positioned on
modified grid

Fig. 1: Placing a shape in a grid.

like the grid in Figure 1(e). The new squares Q to T are fixed to zero, and
the regular expression for the placement of the shape is modified to include the
extra column, resulting in 0∗110410410∗ matching, for example, the placement in
Figure 1(f). The language of that regular expression is now precisely the strings
corresponding to possible placements of the given shape. From now on, we will
assume that grids have an extra column on the right.

Shape placement using regular expressions is not limited to connected shapes.
The only issue is that the extra column must be given a unique value that is not
allowed to occur in inter-piece spaces, so that wrap-around is still prohibited.

The complexity of using the expression as a constraint is decided by the size
of the layered graph. Consider placing a l× l piece on a grid of size m×n, where
n < m. The size of the LG is in O(mn2l) since the size of the regular expression
grows as O(nl).

4 Pentominoes

Pentominoes are the shapes constructed from five equal-sized squares where the
squares form a connected component. This leads to twelve possible shapes. The
pieces can be rotated and mirrored to obtain symmetrical variants.

There is a long history of using the pentomino pieces as a puzzle. For example,
the pieces can be fitted together to form rectangles of sizes 6×10, 5×12, 4×15,
and 3 × 20, as well as 8 × 8 with the middle 2 × 2 squares empty. Other sizes
of pieces can also be used, and are then called polyominoes. In the following, we
will consider placing a general set of polyominoes on a board of fixed size. The
pieces to be placed can be rotated and mirrored.

4.1 Basic Model

We associate a distinct variable to each square on the board, whose value is
the number of the piece which is placed over it. For each piece, we define one
regular constraint for placing it on the board.

� �

�

�

�

� � �

�

�

� �

� � �

�

� �

�

�

� � �

�

�

�

� �

�

� � �

Fig. 2: Rotations of the piece in Figure 1.

Rotating pieces. In contrast to placing a shape as in the previous section, a
pentomino piece may be rotated and mirrored. To handle that, we can use dis-
junctions of regular expressions. Consider the symmetric versions of the piece
from Figure 1(a) as shown in Figure 2. The regular expression for placing the
second piece in Figure 2 on a 4 × 4 grid is 0∗1021110∗. To combine the regu-
lar expressions for the first two pieces, we can simply use disjunction of regular
expressions, arriving at the expression 0∗110410410∗|0∗1021110∗. There are 8
symmetries for the pieces in general. The 8 disjuncts for a particular piece might
contain less than 8 distinct expressions. This redundancy is removed when the
automaton for the expression is computed, since it is minimized.

Using disjunctions is naturally not limited to placing symmetrical pieces, it
can also be used for placing alternative shapes of a piece or alternative pieces.

Placing several pieces. To generalize the above model to several pieces, we let
the variables range from 0 to n, where n is the number of pieces to place. Given
that we place three pieces, and that the above shown piece is number one, we will
replace each 0-expression with the expression ¬1, indicating all values other than
1. Thus, the original regular expression becomes (¬1)∗11(¬1)41(¬1)41(¬1)∗.

4.2 Improvements to the model

While the above model is clear and follows the original statement closely, it is
not very efficient. The main problem here is that each constraint talks about
every value in every variable (through the use of complemented values), even
though it constrains only one of the values. To improve the performance, we
must abstract away the dependence on the placement of the other values, and
only focus on a specific value v for each constraint. Assume that the variables x

describe a m × n board with k pieces to place. In order to abstract the values,
we define additional 0-1 variables yij :

yij = 1 ⇔ xi = j 0 ≤ i < mn, 1 ≤ j ≤ k

To connect the x and y variables, a channeling propagator can be used for
each xi and corresponding 〈yi1, . . . , yik〉. The regular constraints can now be
defined using 0-1 expression on the y variables instead. This extended model
has many more propagators than the original model, mn + k compared to just
k, but the extra propagators are very cheap. We gain in efficiency by reducing
the number of times the regular constraints have to propagate, as well as by
reducing the size of the layered graphs used.

1st, regular 1st, geost all, regular all, geost
Size failures time failures time failures time failures time

20× 3 25 129 6 695 1 434 1 840 35 680 9 320 47 381 49 740
15× 4 4 700 1 015 290 560 649 068 147 210 888 060 939 060
12× 5 541 126 1 594 1 850 2 478 035 576 270 3 994 455 4 112 870
10× 6 893 237 111 260 5 998 165 1 517 150 9 688 985 10 726 810

Table 1: Packing pentominoes. Time is given in milliseconds.

4.3 Evaluation

To evaluate the model four classic pentomino instances are tested: packing
squares of sizes 20 × 3, 15 × 4, 12 × 5, and 10 × 6 with the twelve distinct
pentominoes. The models are solved both for finding one and all solutions. The
branching strategy is to instantiate the x variables in row-major order, trying
to place “harder” pieces first. The ordering of the pieces is LFTWYIZNPUXV
using the standard letter names for Pentomino pieces. The experiments were run
using Gecode 2.1.1 as the CP system on an Athlon 64 3500+ with 2GB of RAM.
The results are compared against the results from [1], were the geost constraint
is presented. These experiments were run using SICStus Prolog 4 on a 3GHz
Pentium IV with 1MB of cache.

The results are shown in Table 1. While no direct comparison can be made
since different computers, constraint solvers, and branching schemes are used, the
results show that using the regular encoding for placement is clearly competitive
with the specialized constraint, at least on tightly constrained instances.

5 Solitaire Battleships

Solitaire Battleships (problem number 14 in CSPLib) is a puzzle derived from
the two-person game Battleship. The objective of the puzzle is to figure out
where the ships are located. The hints given for an instance are the number of
occupied squares in each column and row. Also, some positions are revealed as
being water, submarine, ship end (with orientation) or ship middle. Ships may
not be placed adjacent to each other (not even diagonally). The standard size of
the puzzle uses 10 by 10 grids, with 4 submarines (one unit long), 3 destroyers
(2 units long), 2 cruisers (3 units long), and 1 battleship (4 units long). The size
of the puzzle may, naturally, be varied in general.

Smith discusses several models for Solitaire Battleships, involving up to three
types of variables to channel between, sum constraints, reified constraints, global
cardinality constraints, and regular constraints [7]. The latter are used to restrict
the configurations of ship segments on a given row or column. Global cardinality
constraints ensure that the total number of segments of each type of ship is
correct. We can replace them by ten placement constraints (one per ship), each
encoded as a regular constraint.

Here the difficulty is that ships must be separated by water. By enlarging each
ship with water on two adjacent sides (and similarly for the grid), the resulting

shapes simply need to avoid any overlap, a familiar situation. Rotations are
again allowed, given that the sides where water is added to the ship is invariant.
For the placement constraints there is no need to encode ship parts differently
according to their location (end/middle) or orientation (horizontal/vertical) as
long as water is added on the appropriate sides.

6 Conclusions and Future Work

We have shown how to use the regular constraint for writing clear, simple,
and efficient models for small placement problems. These models use basic un-
derstanding on how to model strings of symbols as regular constraints, which
many programmers have. The model obtained for Pentominoes is competitive
with other approaches.

It would be interesting to do a more detailed comparison to the geost con-
straint for placement problems with regards to complexity and pruning efficiency.
This includes the generalization of the proposed model to higher dimensional
problems. The simplification of the model to use 0-1 variables for the constraints
is important, and thus it would be interesting to find a way to do this transfor-
mation automatically.

Acknowledgements.. Mikael Lagerkvist is partially funded by the Swedish Re-
search Council (VR) under grant 621-2004-4953. Gilles Pesant is partially funded
by the Canadian Natural Sciences and Engineering Research Council (NSERC)
under grant OGP0218028. The authors would like to thank Christian Schulte
and Guido Tack for interesting discussions about the usage of the regular con-
straint.

References

1. N. Beldiceanu, M. Carlsson, E. Poder, R. Sadek, and C. Truchet. A generic geomet-
rical constraint kernel in space and time for handling polymorphic k-dimensional
objects. In C. Bessiere, editor, CP, volume 4741 of Lecture Notes in Computer

Science, pages 180–194. Springer, 2007.
2. N. Beldiceanu, M. Carlsson, and J.-X. Rampon. Global constraint catalog. www.

emn.fr/x-info/sdemasse/gccat, 2008.
3. N. Beldiceanu and E. Contjean. Introducing global constraints in CHIP. Mathe-

matical and Computer Modelling, 12:97–123, 1994.
4. J. G. Fletcher. A program to solve the pentomino problem by the recursive use of

macros. Commun. ACM, 8(10):621–623, 1965.
5. G. Pesant. A regular language membership constraint for finite sequences of vari-

ables. In M. Wallace, editor, CP, volume 3258 of Lecture Notes in Computer Science,
pages 482–495. Springer, 2004.

6. D. S. Scott. Programming a combinatorial puzzle. Technical Report Technical
Report No. 1, Department of Electrical Engineering, Princeton University, 1958.

7. B. M. Smith. Constraint programming models for solitaire battleships. Technical
report, CPPod-20-2006, November 2006.

