
Repairing Bin Packing Constraints
(Extended Abstract)

Alex S. Fukunaga

Global Edge Institute, Tokyo Institute of Technology, Meguro, Tokyo, Japan
fukunaga@is.titech.ac.jp,

Abstract. We consider a variant of the bin packing problem, where
items are initially assigned to bins, and the goal is to rearrange the
items in the minimum number of steps such that the capacity constraints
are satisfied. We consider two search spaces for solving this problem, a
commitment-based search space and a difference-based search space. We
evaluate depth-first branch and bound and IDA* algorithms in these
search spaces, and show that IDA* in the commitment-based search
space significantly outperforms the alternatives.

1 Introduction: The Min-Cost Load Rebalancing Problem

Consider a set of m servers (e.g., web servers) each with capacity c1, ..., cm,
and given a set of n jobs, where each job has a weight w1, ..., wn representing
the amount of workload that the job demands of a server. For example, each
job could represent a web site that is located at a particular server. The load
balancing problem of determining whether each job can be assigned to exactly
one server such that the sum of all jobs assigned to each bin j is less than or
equal to cj is an instance of the decision version of the classical NP-complete bin

packing problem. [5] Note that in this web server example, exceeding C would
cause the overloaded server to fail or have unacceptable response times.

Now, suppose that due to changes in site popularity or content (e.g., increased
downloads of bandwidth-intensive media files), the current loads on the servers
differ from loads that were projected when the initial server assignments were
made. Some of the servers are becoming overloaded. It is possible to reassign jobs
to servers in order to rebalance the loads. However, moving a job between servers
incurs costs (direct costs include system administration costs, intangible costs are
the costs of downtime for a web service). The min-cost load rebalancing problem

is the problem of finding a new assignment of jobs to servers such that (1) no
server is overloaded, and (2) the number of jobs that are moved between severs
is minimized. A closely related problem was considered in [1], which presented
approximation algorithm for the problem of minimizing the maximum load on
any server while moving less than k jobs. Similar problems also exist in the
problem of process migration in distributed systems.

More formally, the Min-Cost Load Rebalancing Problem (MCLRP) is de-
fined as follows: Given m servers with capacities c1, ..., cm, a set of n jobs with



weights w1, ..., wn, and an initial assignment I1, ..., In of jobs to servers, find a
new assignment of jobs to servers x1, ..., xn, 1 ≤ xi ≤ m, such that each job
is assigned to exactly one server, and for every server j, the sum of the job
weights assigned to it is less than or equal to its capacity cj . The objective is to
minimize

∑n

i=1
(xi 6= Ii), the number of differences between the initial and final

assignments. The MCLRP is NP-hard, by reduction from bin packing.

2 Algorithms for the MCLRP

One possible approach to solving the MCLRP is to modify an existing bin pack-
ing algorithm such that instead of terminating after finding a feasible bin assign-
ment of k bins, it searches for a k-bin solution with minimal distance from the
initial assignment. However, this is difficult because the optimal solution to the
MCLRP can be pruned by the techniques used by bin packing solvers. All of the
currently available bin packing algorithms, including column generation solvers
such as [2], search-based methods [4], as well as classical algorithms such as the
Martello-Toth procedure [9], all derive their effectiveness from mechanisms such
as column generation, lower bounds, and dominance detection, which, if applied
straightforwardly, can prune the optimal MCLRP solution. In other words, it is
nontrivial to start with an existing bin packing solver and derive an algorithm
for finding optimal solutions the MCLRP without disabling or substantially al-
tering the pruning mechanisms that are responsible for making the bin packing
solver effective. El Sakkout and Wallace considered a minimal cost repair prob-
lem for an abstract scheduling problem. [3], and proposed a general approach,
probe backtracking, for addressing min-perturbation problems in CSPs. A key
difference from the MCLRP is that they consider difference functions that can
be expressed linearly (the MCLRP difference count is not expressible in their
model). Also, their probe backtracking algorithm does not explicitly consider
the initial schedule, and reschedules from scratch.

In this paper, we focus on exact (complete) search algorithms for the MCLRP.
Given an initial state X0 = x1,0..., xn,0, let Di be the set of states which differ
from X0 by exactly i variable assignment (i.e., i variables in X ∈ Di have a
value which is different from their value in the initial state X0). Consider the set
D = D1 ∪ D2 ∪ ...Dn. We call D the difference space, or D-space.

We can perform a standard depth-first branch-and-bound (DFBNB) search in
D-space, where at each node, we select a variable x and assign it some value which
differs from the value in the initial state X0. The lower bounds and infeasibility
checks described below are applied at each node.

Another way to view the MCLRP is as a path-finding problem, where the
start state is the initial assignment, and the objective is to find a goal state
with minimal distance from the start state. Thus, we consider IDA* [8], which
expands nodes in a best-first order using linear space (at the cost of reopening
some nodes). The admissible heuristic function used by IDA* is the same as the
lower bounding function used for DFBNB (see below), and the d-th iteration
of IDA* explores the subset of the DFBNB D-space search tree where at each



node, the sum f = g + h ≤ d, where g is the number of differences from the
initial state in the current solution, and h is the lower bound on the additional
number of differences required to find a conflict-free solution.

Search in D-space has been the basis of previous work on finding minimal per-
turbation solutions from some initial state for constraint satisfaction problems.
Ran et al have applied IDA* in D-space to solve a minimal perturbation prob-
lem for binary CSPs [11]. Verfaillie and Schiex applied a depth-first backtracking
algorithm to solve dynamic CSPs [12].

An alternative search space is a commitment-based search space (C-space),
where each node in the search tree represents a partially committed assignment
of variables to values. That is, each variable is assigned some value, as well as
whether a commitment has been made to the value. We say that an variable x is
committed to a value v at a search node N if in at N and every descendant of the
node, x is assigned to v, and uncommitted otherwise. For variables x1, ..., xn, we
denote a search state as the list S = {x1 = val1, ..., xn = valn}, or more concisely,
{val1, ..., valn}. Furthermore, the values are annotated with an underline “ ” if
the variable is committed to that value. For example, in a 2-variable MCRP
where the current assignments are v1 = 1, v2 = 2, and we have committed
v1 = 1, we can denote this state as {v1 = 1, v2 = 2}, or more concisely, {1, 2}.
Initially, the variables are assigned the values of the initial assignment I, and all
variables are uncommitted.

As with D-space, it is possible to apply either a depth-first branch-and-bound
or an IDA* search strategy in C-space. DFBNB in C-space was previously pro-
posed by Minton et al [10]. IDA* in C-space is clearly related to Limited Dis-
crepancy search (LDS) [6], as both algorithms search a space which is limited by
some notion of “discrepancy”. In fact, it has been noted that LDS can be viewed
as a best-first search, where the cost of a node is the number of discrepancies
in its path from the root [7]. In LDS, a “discrepancy” refers to a decision which
deviates from the first value suggested by a value-ordering heuristic. Let δ be the
class of all value ordering heuristics where the first value suggested for variable
xi by the value ordering is the value of xi in the initial state. Using some value
ordering from the class δ, we can implement LDS in C-space which is similar to
IDA* in C-space. The differences are: (1) On the d-th iteration, LDS explores
nodes with up to d discrepancies. On the other hand, on the d-th iteration, IDA*
explores all nodes where at each node, the sum f = g + h ≤ d, where g is the
number of discrepancies so far, and h is a lower bound on the additional number
of discrepancies required before a conflict-free state is reached. (2) IDA*, like
DFBNB, is a strategy which specifies the overall backtracking strategy. This is
orthogonal to the selection of a value ordering strategy, which specifies the order
in which children of a node are sorted. LDS and its variants prescribe both a
backtracking strategy as well as a particular value ordering strategy (e.g., in the
context of the MCLRP, LDS would use a strategy from the class δ). Thus, IDA*
in C-space is a generalization of LDS for the MCLRP, i.e., LDS for the MCLRP
is a special case of the C-space IDA* with a trivial lower bound, h = 0, and a
value ordering heuristic from class δ.



We have been evaluating a number of variable ordering and value ordering
heuristics in both C-space and D-space. In our experiments, we used a standard
most-constrained variable (item) ordering, and a simple, random value (bin)
ordering for all combinations of C-space, D-space, DFBNB, and IDA*. Results
using different variable and value ordering strategies are qualitatively similar.

D-space can be defined in terms of C-space as the subset of C-space where all
committed variables are assigned a value that is different than the initial assign-
ment. For example, given variables v1, v2 and initial assignment v1 = 1, v2 = 2,
the assignment v1 = 3, v2 = 2 is in D-space because v1 is committed to a value
that is different value than in the initial assignment and v2 is uncommitted, but
v1 = 1, v2 = 2 is not in D-space because v1 is committed to the same value as
in the initial assignment. Each node in D-space corresponds to a unique assign-
ment of variables to values.1 Despite the redundancy in C-space compared to
D-space, there are some intuitive advantages of C-space. Explicitly committing
a variable to its initially assigned value allows us to consider that commitment
in the domain-specific algorithms for detecting infeasible states and for com-
puting lower bounds on the number of additional changes required to reach a
conflict-free state, allowing us to prune more effectively. Combined with a most-
constrained variable ordering heuristic and some heuristic for value ordering,
this allows us to identify jobs/requests that are highly constrained and hard to
move, and place them early on in the search tree.

2.1 Pruning Infeasible Nodes

A search node N is infeasible if there exists no descendant of N that is a conflict-
free state. Infeasible nodes can be pruned. The wasted space of a bin B is amount
of space in the bin that can not be occupied by any uncommitted item currently
not assigned to B without making B oversubscribed. For example, suppose we
have a bin B = (7) with capacity 10, and three remaining uncommitted items
7,4, and 2 (which are currently in other bins). The wasted space of B is 1, because
the minimal amount of unused space that can be in B is 1, after moving and
committing the 2 to B. The wasted space of a bin assignment is the sum of the
wasted space of each of the individual bins.

Let WUB =
∑m

j=1
cj −

∑n

i=1
wi, the difference between total bin capacity

and total item weights, be an upper bound on the total amount of wasted space
allowed. A node in the search tree is infeasible if a lower bound on the wasted
space exceeds WUB . Such a lower bound is obtained by summing the lower bound
on the wasted space of each single bin,

∑m

j=1
WLB(j). For each bin j, WLB(j)

is computed by find the packing of bin j with minimal wasted space, using all
uncommitted items (this is a relaxation because we allow uncommitted items to
be used by more than one bin). This is a subset sum problem, which our current
implementation solve using a straightforward, branch-and-bound algorithm. The
remaining space in the bin after packing the optimal subset-sum packing is a
lower bound on the actual wasted space of the bin.

1 Symmetric nodes are pruned in both C-space and D-space.



Commitment Space (C-space) Difference Space (D-space)

DFBNB IDA* DFBNB IDA*

(# bins) fail time nodes fail time nodes fail time nodes fail time nodes

4 0 0.007 1230 0 0.002 149 0 28.516 3455195 0 0.009 839
5 0 0.083 14365 0 0.007 1082 0 32.832 3608220 0 0.112 9103.3
6 0 1.091 188503 0 0.044 5072 7 29.868 37833329 0 0.897 63796
8 0 51.011 8580060 0 1.132 110905 16 141.160 8569661 2 23.196 1326308

10 20 n/a n/a 0 8.010 690901 20 n/a n/a 11 51.997 2448719
12 20 n/a n/a 0 58.731 4911799 20 n/a n/a 14 95.74 4446458
15 20 n/a n/a 7 140.660 10848252 20 n/a n/a 20 n/a n/a

Table 1. Min-Cost Load Rebalancing Problem: Depth-first branch-and-bound (DF-
BNB) and IDA* in C-space and D-space. The fail column indicates # of instances (out
of 20) that were not solved within the time limit (300 seconds/instance). The time and
nodes columns show average time spent (seconds on 2.4GHz Intel Core2) and nodes
generated on the successful runs, excluding the failed runs.

2.2 Lower Bounds

We use the following lower bound for DFBNB and IDA* (the admissible heuris-
tic h for IDA*). A bin is oversubscribed if the sum of the weights of the items
assigned to the bin exceeds its capacity. An oversubscription-based lower bound
LBO is computed as follows: For each oversubscribed bin B, sort the uncom-
mitted items assigned to the B in non-decreasing order of weight, and count
the number of items that must be removed from B in this order until the bin
occupancy no longer exceeds capacity. For example, given the bin assignment
{(5, 6)(4, 3)(10, 1, 2)} where bin capacity is 10, LBO = 3. This is because either
the 5 or 6 must move from the first bin, and the 1 and 2 must move from the
third bin (although the 10 is the largest number in the third bin, it is commit-
ted so it is not considered for movement by the LBO computation). Another
lower bound, LBU , is based on the bins that are undersubscribed. If any bin
has more free space than WUB , then some of the remaining uncommitted items
must move into the bin to reduce the wasted space. A valid lower bound is to add
the largest remaining uncommitted items until the free space no longer exceeds
WUB . Since both LBO and LBU are inexpensive to compute, we use a combined
lower bound, LBOU = max(LB0, LBU ). We can not add LB0 and LBU because
that may result in the double-counting of the potential required moves.

Note that these bounds, as well as the previously described method of pruning
infeasible nodes, are all applicable to to search in both C-space and D-space.

3 Experimental Results

We generated a set of solvable benchmarks as follows. m empty bins were initial-
ized with capacity 100. For each bin bj , items were randomly generated in the
range [10,30] and assigned to bj until the remaining space r was under 10. At



that point, the slack in the bin was reduced by adding one random ’filler’ item
such that the remaining space in bj was between 0 and 2. By minimizing the
slack (free space) the difficulty of the instance is increased. Then all the bins were
emptied, and the items were combined into a single list, which was shuffled and
reassigned to the bins in a round-robin manner. This generation process ensures
that the instance has a feasible solution. Because of this generation method, the
number of items in each instance varies, but is approximately 5m. We tested
each of the four search algorithm configurations on 20 random instances with m

varying from 4 to 15, with a time limit of 300 seconds per instance on a 2.4GHz
Intel Core2 processor. Results are shown in Table 1. The fail column indicates
the number of instances (out of 20) that were not solved within the time limit
(300 seconds/instance). The time and nodes columns show average time spent
and nodes generated on the successful runs, excluding the failed runs.

As shown in Table 1, IDA* in C-space significantly outperformed the other
three algorithms. Both of the C-space algorithms significantly outperformed the
D-space search algorithms, and in both search spaces, IDA* outperformed DF-
BNB. Future work will present more detailed results, including the effect of
various variable and value orderings, as well as additional bounds.

References

1. G. Aggarwal, R. Motwani, and A. Zhu. The load rebalancing problem. In Proc.

15th ACM Symp. on parallel algorithms and architectures, pages 258–265, 2003.
2. G. Belov and G. Scheithauer. A branch-and-cut-and-price algorithm for one-

dimensional stock cutting and two-dimensional two-stage cutting. European Jour-

nal of Operational Research, 171:85–106, 2006.
3. H. El-Sakkout and M. Wallace. Probe backtrack search for minimal perturbation

in dynamic scheduling. Constraints, 5:359–388, 2000.
4. A. Fukunaga and R. Korf. Bin completion algorithms for multicontainer packing,

knapsack, and covering problems. Journal of AI Research, 28(393-429), 2007.
5. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman and Company, 1979.
6. W. Harvey and M. Ginsberg. Limited discrepancy search. In Proc. IJCAI, pp.

607–615, 1995.
7. R. Korf. Improved limited discrepancy search. In Proc. AAAI, pp. 286–291, 1996.
8. R.E. Korf. Depth-first iterative-deepening: an optimal admissible tree search. Ar-

tificial Intelligence, 27(1):97–109, 1985.
9. S. Martello and P. Toth. Knapsack problems: algorithms and computer implemen-

tations. John Wiley & Sons, 1990.
10. Steven Minton, Mark D. Johnston, Andrew B. Philips, and Philip Laird. Minimiz-

ing conflicts: A heuristic repair method for constraint satisfaction and scheduling
problems. Artificial Intelligence, 58(1-3):161–205, 1992.

11. Y.P. Ran, N. Roos, and H.J. van den Herik. Approaches to find a near-minimal
change solution for dynamic CSPs. In Proc. CP-AI-OR, pages 378–387, 2002.

12. G. Verfaillie and T. Schiex. Solution reuse in dynamic constraint satisfaction prob-
lems. In Proc. AAAI, pages 307–312, Seattle, Washington, 1994.


