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Abstract. This paper describes an integer programming model for gen-
erating stable loading patterns for the Pallet Loading Problem. The algo-
rithm always gives optimal or near-optimal utilization of the pallet area
and fulfills stability criteria for 98% of the test cases.

1 Introduction

A Pallet Loading Problem (PLP) is a problem of finding the optimal layout for
packing a set of identical boxes onto a rectangular pallet. Normally the height
of a box is considered to be fixed, and then a three dimensional pallet loading
problem is reduced to a two dimensional problem PLP (L,W, l, w). The objective
is to allocate a maximum number of identical small rectangles of length l and
width w on a bigger rectangle, a pallet, of length L and width W . The problem
is a special case of the broader class of packing, cutting and placement problems
as described in [7].

Typically, the PLP arises in logistics, where distributed goods have to be
packed in layers on uniform pallets. The utilization of a pallet area is an im-
portant issue, which has an impact on the efficiency and cost of distribution.
The stability of the generated loading pattern is a critical issue, yet not much
studied. A solution of the PLP, which does not consider stability of a load, is
more of theoretical value and hardly can be of use in practice.

In the current state-of-the-art methods for PLP, stability issues are either a
secondary objective or not considered at all. Developers of methods that consider
stability aspects often stress that there is a trade off between high utilization
of a pallet and stability of the load pattern. The methods often work in a trial-
and-error fashion generating a number of patterns to find the one which satisfy
stability criteria best.

Our approach is different. We show that the stability criteria may be treated
as the main objective without compromising utilization of a pallet. In contrast
to previous methods using heuristic approaches to handle stability, our method
is built on an Integer Programming (IP) formulation of the PLP, which has been
shown to be very effective for moderate size problems (see eg. [1]). Furthermore,
with the new method better results with respect to utilization and stability
criteria are obtained on the test cases.
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Section 2 gives a short description of the previous work on stability issues
of the PLP. Section 3 describes the outline of our algorithm and the subsequent
sections 4-7 give an in-depth description of each of its phases. Finally, Section 8
presents the results of the computational evaluation.

2 Related Work

The state-of-the-art on methods for solving PLP is given in e.g. [1]. Many of
the methods use different types of heuristics. The block building heuristic is the
most popular, see e.g. [3, 10, 11]. With this heuristic, boxes are allocated on the
edges of the pallets and then the loading pattern is extended towards the center
of the pallet.

Carpenter and Dowsland [5] introduce the following three stability criteria:
The supportive criterion ensures interlock between columns of boxes in a load-
ing pattern. The base contact criterion prevents situations where a box is not
supported over an arbitrary percentage of its base. The non–guillotine criterion
prevents creating patterns with straight cuts running across whole length or
width of a pallet. The last criterion is closely related to the supportive criterion
and is often considered redundant.

Bischoff [4] uses the criteria of [5] to verify stability of the loading pattern.
To achieve maximum stability, Bischoff develops procedures of compacting, cen-
tering blocks and disturbing gaps, and incorporates them into the PLP solution
algorithm by Bischoff and Dowsland [3].

Liu and Hsiao [9] consider a PLP, where boxes might be stacked on either
their bottom, side or end surface, with the additional requirement of uniform
height of each layer. The algorithm operates in five steps using the supportive
criterion and the base contact criterion from [5]. A layout for each type of layer
is computed using the block building heuristics of Smith and de Cani [11]. Then,
new patterns are constructed by reflection and rotation. Finally, all combinations
of generated patterns are constructed and the best stacking sequence is found.
As in earlier stability methods, the loading pattern is an secondary objective
compared to the utilization of a pallet.

3 The Algorithm for Generating Loading Patterns

The new algorithm for generating loading patterns works in three phases:

Phase 1 computes the maximal number of boxes and a maximal layout for
one layer.

Phase 2 computes two layers such that both layer 1 placed on layer 2, and
layer 2 placed on layer 1 fulfill (or nearly fulfill) the stability criteria.

Phase 3 creates full load by stacking boxes according to patterns computed
in Phase 2 up to an arbitrary height H.



Phase 2 computes optimal (or near-optimal) patterns and is the core of the
algorithm with three stages. The algorithm proceeds from one stage to the next
when it fails to produce a stable loading pattern. In contrary, if the generated
pattern is stable, the algorithm jumps directly to the phase generating complete
loading patterns. The three stages of Phase 2 are the following:

Stage 1 computes new patterns by reflecting/rotating patterns computed in
Phase 1.

Stage 2 computes a stable model using an IP formulation of the PLP, ex-
tended by stability constraints.

Stage 3 computes a near-optimal solution.

4 Computing the Optimal Layout of One Layer

This section and the following two describe the phases and stages of the new
algorithm in detail. The optimal layout of a layer is computed using an IP
formulation adopted from [2]. Two types of 0-1 variables are used, hij and vij .
They equal 1 if a box is placed horizontally and vertically, respectively, with
their lower left corner in position (i, j). The IP formulation of the PLP is

max

L−l∑
i=0

W−w∑
j=0

hij +

L−w∑
i=0

W−l∑
j=0

vij (1)

subject to

min{r,L−l}∑
i=max{0,r−l}

min{s,W−w}∑
j=max{0,s−w}

hij +

min{r,L−w}∑
i=max{0,r−w}

min{s,W−l}∑
j=max{0,s−l}

vij ≤ 1 (2)

(r = 0, . . . , L− 1; s = 0, . . . ,W − 1),

hij ∈ {0, 1} (0 ≤ i ≤ L− l; 0 ≤ j ≤ W − w) (3)

vij ∈ {0, 1} (0 ≤ i ≤ L− w; 0 ≤ j ≤ W − l). (4)

Constraints (2) ensure that no boxes will overlap and are often referred to as
cover constraints. The total number of variables is L×W ×2 and the number of
constraints is L×W . For a PLP (100, 100, 11, 10) this leads to 20000 variables and
10000 constraints. These numbers can be significantly diminished by reducing
the number of possible positions where boxes can be allocated. First, as shown
in [8, 6], the number of points for a feasible placement of a box on a pallet can
be reduced to normal sets given by the following equations,

S(L) = S(L, l, w) = {r : r = αl + βw, r + l ≤ L,α, β ∈ Z+} (5)
S(W ) = S(W, l, w) = {r : r = αl + βw, r + w ≤W,α, β ∈ Z+}. (6)

Reducing all points to normal sets for the PLP (100, 100, 11, 10), the new problem
size is 4140 variables and 2116 constraints, a significant reduction. Furthermore,
using dominance relations adopted from dynamic programming by Scheithauer
and Terno [10], define

〈s〉L := max{r ∈ S(L) : r ≤ s}. (7)



This leads to a further reduction of normal sets to rasters defined as

S̃(L) = S̃(L, l, w) = {〈L− r〉L : r ∈ S(L)} (8)

S̃(W ) = S̃(W, l, w) = {〈W − r〉W : r ∈ S(W )}. (9)

For the PLP (100, 100, 11, 10), applying this technique reduces the problem size
to 612 variables and 324 constraints. The size of the problem after all reductions
is about 3% of the original size of the problem! Additional reductions are possible
by considering each orientation of a box separately.

5 Creating Layers by Simple Transformations

Given an optimal layer layout for a problem, create a subsequent layer using the
following transformations:

1. a 180 degree rotation,
2. a reflection in the shorter pallet edge (W ),
3. a reflection in the longer pallet edge (L).

The configurations created by combining the original and the generated patterns,
in total six configurations, are evaluated with respect to base support and base
contact criteria. Since the stability of layer 2 on layer 1, created by any of these
transformations, implies stability of layer 1 placed on layer 2 ([5]), the complete
load can be created by repeating stable patterns. Otherwise, the configuration
closest to feasibility is used in the subsequent step as an initial solution.

6 Computing Stable Layers Using an IP Model

This section describes how a stable layout is computed by incorporating stability
constraints into an IP formulation of the PLP in Section 4. The formulation
includes variables denoting possible placement on two layers, the original layer
on level z = 0 and a layer on the top of it with z = t, where t denotes the fixed
height of a box. To assure that the number of boxes on each layer is optimal,
add the constraint

L−l∑
i=0

W−w∑
j=0

hij +

L−w∑
i=0

W−l∑
j=0

vij ≥ opt for z = 0, t (10)

where opt is the optimal number of boxes at each layer as determined in the
previous phase of the algorithm. Moreover, let M be an arbitrary large number.
For each box at level z = t in point (i, j), the supportive criterion is met by
adding constraints

∀(i, j)
m<i+l∑
m>i−l

n<j+w∑
n>j−w

hmn +

p<i+l∑
p>i−w

q<j+w∑
q>j−l

vpq ≥ 2 + (1− hij) ·M (11)

∀(i, j)
m<i+w∑
m>i−l

n<j+l∑
n>j−w

hmn +

p<i+w∑
p>i−w

q<j+l∑
q>j−l

vpq ≥ 2 + (1− vij) ·M (12)



where (m,n) and (p, q) are points at z = 0. Constraints ensure that each box at
level z = t is supported by at least two boxes in the layer below.

Let ε be a value in [0, 1], denoting the ratio of base area of a box in con-
tact with boxes in the layer below. The base contact criterion for horizontally
and vertically oriented boxes is assured by adding constraints (13) and (14),
respectively, i.e.

m<i+l∑
m>i−l

n<j+w∑
n>j−w

((min(i+ l,m+ l)−max(i,m)) · (min(j + w, n+ w)−max(j, n))) · hmn

+

p<i+l∑
p>i−l

q<j+w∑
q>j−w

((min(i+ l, p+ w)−max(i, p)) · (min(j + w, q + l)−max(j, q))) · vpq

≥ ε · l · w · hij (13)

m<i+w∑
m>i−w

n<j+l∑
n>j−l

((min(i+ w,m+ l)−max(i,m)) · (min(j + l, n+ w)−max(j, n))) · hmn

+

p<i+w∑
p>i−w

q<j+l∑
q>j−l

((min(i+ w, p+ w)−max(i, p)) · (min(j + l, q + l)−max(j, q))) · vpq

≥ ε · l · w · vij (14)

To ensure that each box on the level z = 0 will maintain both stability
criteria when placed on layer z = t, define the corresponding constraints for
each box at layer z = 0. For boxes with z = 0 the stability criteria are fulfilled if
at least two boxes are placed at its top, and also ε of its top area is covered by
boxes at level z = t. In this formulation, problems which use rasters, as defined
in Section 4, easily becomes overconstrained and require the addition of new
possible placement points. To avoid such a situation, computation at this stage
uses normal sets instead of rasters.

7 Near-Optimal Solutions

For most of the tested problems, a stable loading pattern is quickly generated
at Stage 1 or Stage 2. However, a few instances require a higher number of
points for possible placement in order to produce a feasible solution. Some of
the instances show a clear pattern: in the original, optimal layout of a layer
there exists a waste space between packed boxes and edges of the pallet, and no
waste in between boxes. For these cases, generate patterns which at each layer
includes at most one box violating the base support criterion and with at least
l+w of the base area not supported by other boxes. The new layer is generated
by duplicating the original layer and adjusting the position of each box with the
least waste between packed boxes and the L and W edges of the pallet, and the
integer value of the total box area divided by l · w.

If no waste exists between boxes and edges of the pallet, do a new compu-
tation with the same stability constraints as the ones in Section 6, except that
the lower bound on the number of boxes on each layer is diminished with an
arbitrary amount.



8 Computational results

The method is evaluated on the set of benchmarks described in [9], but we
investigate only configurations where the height of a box is fixed, corresponding
to B-type of layers. The benchmarks for the problem are generated as follows.
The pallet specifications are set to L = 110 cm, W = 110 cm and H = 140
cm. Boxes are generated with 1 cm increments, starting with l = 30 to 40 cm,
w = 20 to 30 cm and height is set to 40 cm, which gives 121 box sizes. As in
[9] we consider supportive criterion and base contact criterion with ε = 0.75.
Results of the evaluations are given in Table 1.

Our evaluation Reported in [9]

Fully stable patterns 95.8 % Not reported
95% of boxes are stable 95.8 % 9.92 %
Average number of stable boxes 99.6 % 82.8 %
Optimal area utilization 98 % Not reported

Table 1. Results of computational evaluation.

We conducted additional tests for Cover 1 problems, i.e. where each layer
contains at most 50 boxes, L\W ≤ 2 and l\w ≤ 4. For 87.7%, optimal stable
patterns were generated within a few minutes using a Dell Latitude D630 laptop.
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