Exact methods for rectangle placement problems

Exact methods for rectangle placement problems

François Clautiaux

Université des Sciences et Technologies de Lille LIFL, UMR USTL/CNRS 8022 Equipe projet INRIA DOLPHIN

May 22, 2008

Exact methods for rectangle placement problems

Introduction

- 2 Heuristics / feasibility tests
- 3 Exact methods
- Guillotine-cutting problem

Exact methods for rectangle placement problems

Introduction

1 Introduction

- 2 Heuristics / feasibility tests
- 3 Exact methods
- Guillotine-cutting problem
- 5 Summary and some issues

Exact methods for rectangle placement problems

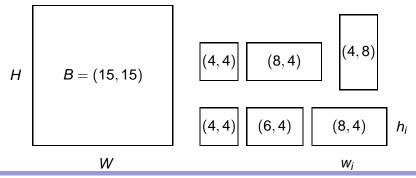
Rectangle placement problems

- Finding a placement in a large rectangle (bin) for a list of small rectangles (items)
- Cutting iron, wood, paper, packing containers in a cargo, ...
- A crucial subproblem in many two-dimensional cutting and packing problems (knapsack, bin- or strip-packing, ...)
- This problem is NP-complete

Exact methods for rectangle placement problems

Introduction

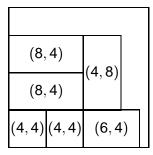
Rectangle placement



François Clautiaux Univ. Lille 1 May 22, 2008

Exact methods for rectangle placement problems

Rectangle placement



Exact methods for rectangle placement problems

Introduction

Presentation content

- Heuristic and initial feasibility tests
 - Heuristics and links with exact methods
 - Bin packing lower bounds as feasibility tests (links with LP)
- Exact methods for the rectangle placement problem
 - Several models and paradigms used
 - We will focus on a constraint-based scheduling model
 - Some feasibility tests
- The guillotine case
 - Several models
 - A new graph-theoretical model
 - A constraint-programming model

Exact methods for rectangle placement problems

Introduction

- 2 Heuristics / feasibility tests
 - Heuristics
 - Initial feasibility tests

3 Exact methods

Guillotine-cutting problem

Exact methods for rectangle placement problems
L Heuristics / feasibility tests
L Heuristics

Simple heuristics

- for large instances, only heuristics can be used
- simple heuristics are efficient for many cases
- heuristics based on the bottom-left rule
- improving results using metaheuristics

Exact methods for rectangle placement problems
L Heuristics / feasibility tests
L Heuristics

Several types of methods

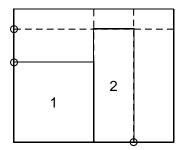
- direct placement methods with local search [Boschetti and Mingozzi, 2002, El Hayek et al., 2007, Neveu et al., 2008]
 - placement considering all remaining surfaces
 - placement with "masked" surfaces
- using the graph-theoretical model of [Fekete and Schepers, 1997]
 - a tabu-search determining the relative placement of the items in the bin [Crainic et al., 2003]

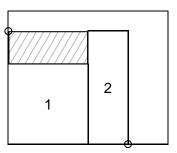
Exact methods for rectangle placement problems

Heuristics / feasibility tests

-Heuristics

Two ways of packing items





Exact methods for rectangle placement problems
L Heuristics / feasibility tests
L Initial feasibility tests

Bin packing lower bounds as feasibility tests

- determining a priori in polynomial time cases where the rectangles cannot fit in the bin
- trivial rules (incompatible pairs, ...)
- lower bounds defined for 2D bin packing problems

Exact methods for rectangle placement problems
L Heuristics / feasibility tests
L Initial feasibility tests

Continuous bound

 The total surface of the rectangles has to be smaller than the surface of the bin Formulation

$$\left\lceil \sum_{i \in I} \frac{w_i h_i}{WH} \right\rceil \le 1$$

- Transformation of the instance that conserves the validity of a pattern
- The goal is to increase the continuous bound
- Using one-dimensional dual-feasible functions

Exact methods for rectangle placement problems
L Heuristics / feasibility tests
L Initial feasibility tests

Dual feasible functions

A discrete dual-feasible function f is such that :

$$\mathbf{x}_1 + \mathbf{x}_2 + \ldots + \mathbf{x}_k \leq \mathbf{X} \Rightarrow f(\mathbf{x}_1) + f(\mathbf{x}_2) + \ldots + f(\mathbf{x}_k) \leq f(\mathbf{X})$$

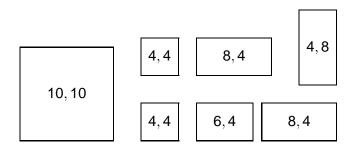
- Applying DFF on both dimensions of the instance [Fekete and Schepers, 1997]
- The continuous bound is still valid for the initial instance
- Many DFF are known and can be applied in turn (see [FC, Alves, Carvalho, 2008] for a survey on DFF)

Exact methods for rectangle placement problems

Heuristics / feasibility tests

Initial feasibility tests

DFF and 2BP

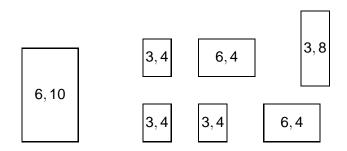


Exact methods for rectangle placement problems

Heuristics / feasibility tests

Initial feasibility tests

DFF and 2BP

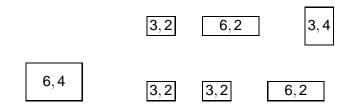


Exact methods for rectangle placement problems

Heuristics / feasibility tests

Initial feasibility tests

DFF and 2BP



Exact methods for rectangle placement problems
Heuristics / feasibility tests
Initial feasibility tests

Weakness of the feasibility tests known

- in the end, only one-dimensional reasoning are used
- difficult to apply to a partial pattern (filtering)
- weaker when the number of bins in an optimal solution is small (here, one or two!)

Exact methods for rectangle placement problems

Exact methods

1 Introduction

2 Heuristics / feasibility tests

3 Exact methods

- State of the art
- A scheduling-based algorithm
- Feasibility tests

Exact methods for rectangle placement problems

Exact methods

-State of the art

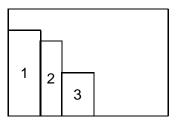
Three types of models

- Iterative placement of the rectangles
 - using the bottom-left rule [Hadjiconstantinou and Christofides, 1995], [Martello and Vigo, 1998]
 - using a discretization of the large rectangle (all positions tested in turn for each rectangle) [Beldiceanu and Carlsson, 2001]
- Relations between the rectangles
 - above/under/left/right [Pisinger and Sigurd, 2007]
 - graph-theoretical model [Fekete and Schepers, 1997]
- Scheduling-based algorithms
 - using a scheduling relaxation [FC, Carlier, Moukrim, 2006], [FC, Jouglet, Carlier, Moukrim, 2008]

Exact methods for rectangle placement problems

Exact methods

-State of the art

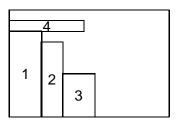


- Pros : does not depend on the size of the bin, a small computing time at each node
- Cons : symmetries, deductions during the search, difficulty to focus on "important" items

Exact methods for rectangle placement problems

Exact methods

-State of the art

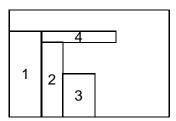


- Pros : does not depend on the size of the bin, a small computing time at each node
- Cons : symmetries, deductions during the search, difficulty to focus on "important" items

Exact methods for rectangle placement problems

Exact methods

-State of the art

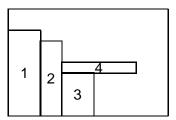


- Pros : does not depend on the size of the bin, a small computing time at each node
- Cons : symmetries, deductions during the search, difficulty to focus on "important" items

Exact methods for rectangle placement problems

Exact methods

-State of the art

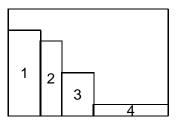


- Pros : does not depend on the size of the bin, a small computing time at each node
- Cons : symmetries, deductions during the search, difficulty to focus on "important" items

Exact methods for rectangle placement problems

Exact methods

-State of the art

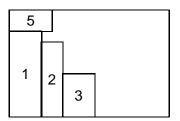


- Pros : does not depend on the size of the bin, a small computing time at each node
- Cons : symmetries, deductions during the search, difficulty to focus on "important" items

Exact methods for rectangle placement problems

Exact methods

-State of the art

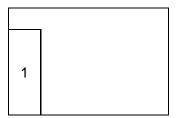


- Pros : does not depend on the size of the bin, a small computing time at each node
- Cons : symmetries, deductions during the search, difficulty to focus on "important" items

Exact methods for rectangle placement problems

Exact methods

-State of the art



- **Pros** : deductions during the search, possibility to focus on "important" items
- **Cons** : depends on the size of the bin, symmetries

Exact methods for rectangle placement problems

Exact methods

-State of the art

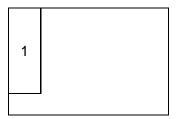


- **Pros** : deductions during the search, possibility to focus on "important" items
- **Cons** : depends on the size of the bin, symmetries

Exact methods for rectangle placement problems

Exact methods

-State of the art

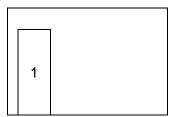


- Pros : deductions during the search, possibility to focus on "important" items
- **Cons** : depends on the size of the bin, symmetries

Exact methods for rectangle placement problems

Exact methods

-State of the art

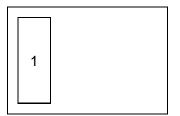


- Pros : deductions during the search, possibility to focus on "important" items
- **Cons** : depends on the size of the bin, symmetries

Exact methods for rectangle placement problems

Exact methods

-State of the art

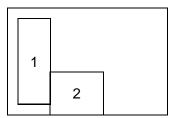


- Pros : deductions during the search, possibility to focus on "important" items
- **Cons** : depends on the size of the bin, symmetries

Exact methods for rectangle placement problems

Exact methods

-State of the art



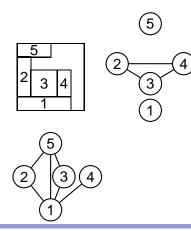
- Pros : deductions during the search, possibility to focus on "important" items
- **Cons** : depends on the size of the bin, symmetries

Exact methods for rectangle placement problems

Exact methods

-State of the art

Graph-theoretical model [Fekete and Schepers, 1997]



- Pros : does not depend on the size of the bin, possibility to focus on "important" items, few symmetries
- **Cons** : deductions during the search, the remaining symmetries are hard to handle, a large computing time for each node

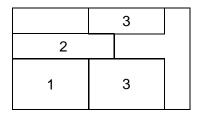
Exact methods for rectangle placement problems

Exact methods

A scheduling-based algorithm

A 1.5packing relaxation [FC, Carlier, Moukrim, 2004]

- Replacing the vertical non-overlapping constraints by cumulative constraints
 - rectangles are cut into horizontal strips
 - they have to be packed at the same x-ordinate
 - *1.5packing* or *cut-packing* [Hoyland, 1988]



Exact methods for rectangle placement problems

Exact methods

A scheduling-based algorithm

Using the relaxation in a two-phase method

- Seeking a solution for the cutpacking problem
- For each solution, checking if it corresponds with a feasible solution for the rectangle placement problem

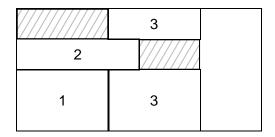
Exact methods for rectangle placement problems

Exact methods

A scheduling-based algorithm

First phase

- At each step j, we seek the set of rectangles to be packed at the current x-ordinate
- the quantity of lost area is recorded



Exact methods for rectangle placement problems

Exact methods

A scheduling-based algorithm

The two-phase method : pros and cons

- The method is efficient, since the relaxed problem is often unfeasible when the original problem is not feasible.
- Better than bottom-left placement methods, and competitive with the graph-theoretical based method.

- Pros : strong relaxation : an easier problem, independent of the bin size, less symmetries
- **Cons** : some symmetries remain, difficulty to focus on the "important" rectangles, difficulty to make deductions at each step of the method

Exact methods for rectangle placement problems

Exact methods

A scheduling-based algorithm

Toward a constraint-scheduling based method

- The two latter issues can be taken into account using a constraint-programming model.
- The 1.5packing problem is strictly equivalent to the cumulative scheduling problem.
- Many researchers have worked on constraint-based scheduling methods => using their work to improve the method

Exact methods for rectangle placement problems

Exact methods

A scheduling-based algorithm

Basic model in constraint programming

Variables :

 $\forall i \in I : X_i$ and Y_i coordinates of item *i* in the rectangle

Domains :

$$\forall i \in I : D(X_i) = [X_i^{min}, X_i^{max}] \\ \forall i \in I : D(X_i) = [X_i^{min}, X_i^{max}]$$

• Constraints :

$$\forall i, k \in I, i \neq k, [X_i + w_i \leq X_k] \text{ or } [X_k + w_k \leq X_i] \text{ or } [Y_i + h_i \leq Y_k] \text{ or } [Y_k + h_k \leq Y_i]$$

(non-overlap constraint)

Exact methods for rectangle placement problems

Exact methods

A scheduling-based algorithm

Two cumulative scheduling problems

The "horizontal" problem

- A resource R^H of capacity H
- *n* jobs A_i^w to schedule on R^H
 - computing time : w_i
 - demand on R^W : h_i
- The "vertical" problem
 - A resource R^W of capacity W
 - *n* jobs A_i^h to schedule on R^W
 - computing time : h_i
 - demand on R^H : w_i

Exact methods for rectangle placement problems

Exact methods

A scheduling-based algorithm

Scheduling-based model

Resource constraints

•
$$\forall t \in [0, W), \sum_{\substack{A_i^w \text{ s.t. } start(A_i^w) \le t \le start(A_i^w) + w_i \\ \Psi t \in [0, H), \sum_{\substack{A_i^h \text{ s.t. } start(A_i^h) \le t \le start(A_i^h) + h_i \\ W_i \le W}} w_i \le W$$

Link with the basic model

•
$$start(A_i^w) = X_i$$

•
$$start(A_i^h) = Y_i$$

Exact methods for rectangle placement problems

Exact methods

A scheduling-based algorithm

Why using this model?

- using the methods that already exist in constraint solvers (here we use ILOG scheduler)
- using propagation rules and operations research techniques that have been used for years on cumulative scheduling problems (see [Baptiste, Le Pape and Nuijten, 2001])

Exact methods for rectangle placement problems

Exact methods

A scheduling-based algorithm

Branching scheme

We use depth-first search (schedule-or-postpone branching scheme)

At each step :

- we choose a non-scheduled job A and we fix its variable start(A) to the smallest possible value t
- if the start time t leads to a fail, A will not be reconsidered before D(start(A)) is modified by another choice

Exact methods for rectangle placement problems

Exact methods

A scheduling-based algorithm

Computational results

	OPP		TSBP		SWEE	P	Sch. Model	
instance	nodes	cpu	nodes	cpu	nodes	cpu	nodes	сри
00, N, 23	-	_	9057985	289	-	-	3675002	160
00, N, 23	_	_	5968406	86	_	_	1496331	70
05, N, 15	18369	2	1	0	111815	17	1	0
05, F, 20	547708	491	39387	2	78	0	27515	1
04, F, 20	22796	22	5876	3	238252	11	59795	3
10, N, 15	77	0	1	0	_	_	1	0
03, N, 16	9891	2	1592400	32	308003	62	14897	1
05, N, 17	1	0	993	1	175651	11	1673	0
03, F, 18	574	0	2605815	22	3205	0	1111	0
04, N, 18	24593	10	434824	7	3529193	329	1032	0
02, F, 20	_	_	487230	12	951640	42	2245	0
04, F, 17	20270	13	1942682	26	66	0	474	0
00, N, 15	127	0	96920	2	813351	136	610	0
20, F, 15	36	0	4355492	44	58	0	96	0
02, F, 22	190617	167	174943	4	4110	0	31	0
04, F, 19	786057	560	1075159	7	700	0	29	0
05, F, 18	262	0	20245458	126	149	0	25	0
08, F, 15	433	0	22658934	117	68	0	21	0
13, N, 15	1	0	91	0	102913	9	1	0
15, N, 15	1	0	1117	0	99905	6	1	0
Avg.	43521	33.53	1764380	19.73	179262.8	18.11	129527	6.09

Exact methods for rectangle placement problems

Exact methods

A scheduling-based algorithm

Constraint-based scheduling method : pros and cons

- Pros : a strong relaxation, which leads to an easier problem, does not depend on the size of the bin, removes some symmetries, ability to focus on the "important" rectangles, some deductions at each step
- **Cons** : some symmetries remain, difficulty to make real two-dimensional deductions during the search

Exact methods for rectangle placement problems

Exact methods

-Feasibility tests

Feasibility tests

Algorithms to determine that a partial solution cannot lead to any valid solution.

- classical constraint-propagation strategies
- using DFF on a partial pattern
- two-dimensional energetic reasoning
- tests based on a knapsack model

Exact methods for rectangle placement problems

Exact methods

Feasibility tests

Applying DFF to a partial solution

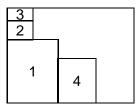
- When rectangles are packed, their dimensions are not modified
- DFF will produce the same value as initially
- How can we exploit the additional information?
 - aggregation of the rectangles into large rectangles

Exact methods for rectangle placement problems

Exact methods

-Feasibility tests

Applying DFF to a partial solution

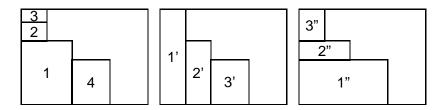


Exact methods for rectangle placement problems

Exact methods

-Feasibility tests

Applying DFF to a partial solution



If one of the obtained instance is non-feasible, then the current pattern does not lead to any feasible solution.

Exact methods for rectangle placement problems

Exact methods

-Feasibility tests

Energetic reasoning

Initially developped for cumulative scheduling problems [Erschler et al., 1991], [Lopez et al., 1992] For a given time interval [α , β), the energy is produced by the resources and consumed by the jobs

- energy produced by a resource of capacity $C : (\beta \alpha)C$
- minimum energy consumed by a task A : part of A that is scheduled in [α, β)

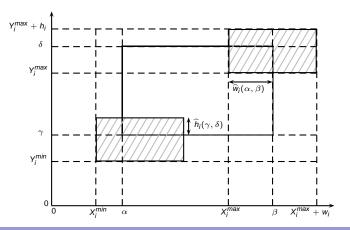
Quantity of energy produced and consumed in several intervals \implies feasibility tests and deductions

Exact methods for rectangle placement problems

Exact methods

-Feasibility tests

Two-dimensional energetic reasoning



Exact methods for rectangle placement problems

Exact methods

-Feasibility tests

Other feasibility tests for the mandatory parts

- The considered area is rectangular
- The mandatory parts of the rectangles are rectangular
- \implies a new rectangle placement subproblem (similarly to [Néron *et al.*, 2006])
 - Initial feasibility tests (DFF)
 - Exact method?

Exact methods for rectangle placement problems

Exact methods

-Feasibility tests

Solving a knapsack problem to perform feasibility tests

A specific knapsack problem :

Data : a set of values c_1, \ldots, c_z and a value C

Determining the largest sum of values less than or equal to C

$$\max\left\{\sum_{i=1}^{z}c_{i}\xi_{i}:\sum_{i=1}^{z}c_{i}\xi_{i}\leq C,\xi_{i}\in\{0,1\}\right\}$$

Particular (and difficult) case of the knapsack problem, which can be solved in pseudo-polynomial time : 0(zC)

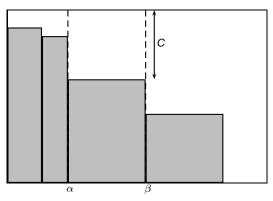
Exact methods for rectangle placement problems

Exact methods

-Feasibility tests

Solving a knapsack problem to perform feasibility tests

Computing an estimation of the lost area in the interval $[\alpha, \beta)$



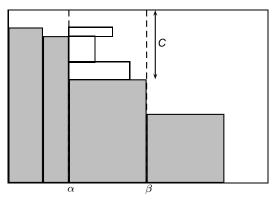
Exact methods for rectangle placement problems

Exact methods

-Feasibility tests

Solving a knapsack problem to perform feasibility tests

Computing an estimation of the lost area in the interval $[\alpha, \beta)$



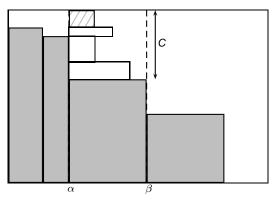
Exact methods for rectangle placement problems

Exact methods

-Feasibility tests

Solving a knapsack problem to perform feasibility tests

Computing an estimation of the lost area in the interval $[\alpha, \beta)$



Exact methods for rectangle placement problems

Exact methods

-Feasibility tests

Computational experiments

			ER		KF	KP		ER+KP		LB+ER(LB)+KP	
instance	nodes	cpu	nodes	cpu	nodes	cpu	nodes	cpu	nodes	cpu	
00, N, 23	3675002	160	88446	6	50095	6	42207	6	32926	26	
00, N, 23	1496331	70	7134	1	3208	1	3283	1	1731	1	
05, F, 20	27515	1	27513	1	27515	1	27513	1	27513	1	
04, F, 20	59795	3	9002	1	8336	1	5580	1	657	0	
03, N, 16	14897	1	5183	1	8008	1	4743	1	3905	4	
20, F, 15	7229	0	7229	0	6863	0	6863	0	27	0	
04, N, 15	10181	0	4945	0	8002	1	4508	1	3286	3	
03, N, 15	3562	0	3084	0	3085	0	2863	0	2217	2	
10, N, 15	2622	0	2622	0	2437	0	2437	0	1844	1	
07, N, 15	2149	0	2143	0	2133	0	2128	0	1966	1	
05, N, 17	1673	0	1661	0	1649	0	1637	0	87	0	
08, N, 15	1420	0	1420	0	1420	0	1420	0	1	0	
03, F, 18	1111	0	1056	0	1060	0	1015	0	838	0	
04, N, 18	1032	0	812	0	697	0	579	0	149	0	
02, F, 20	2245	0	275	0	236	0	165	0	30	0	
04, F, 15	287	0	286	0	285	0	285	0	284	0	
03, N, 17	260	0	212	0	163	0	163	0	163	0	
00, N, 15	610	0	102	0	96	0	89	0	80	0	
05, F, 18	25	0	25	0	25	0	25	0	25	0	
Avg.	129527	6.09	4029	0.61	3115	0.65	2670	0.65	1924	1.32	

Exact methods for rectangle placement problems

Guillotine-cutting problem

Introduction

2 Heuristics / feasibility tests

3 Exact methods

- 4
- Guillotine-cutting problem
- Problem description
- A new graph-theoretical model
- A constraint-programming based method

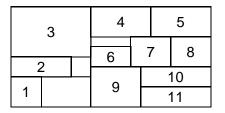
5 Summary and some issues

Exact methods for rectangle placement problems

Guillotine-cutting problem

-Problem description

Guillotine-cutting problem



Guillotine-cutting problem

- Only guillotine cuts can be applied
- a dichotomic cutting pattern

Exact methods for rectangle placement problems

Guillotine-cutting problem

Problem description

Branch-and-bound algorithms

Top-down algorithm [Christophides and Whitlock, 1995]

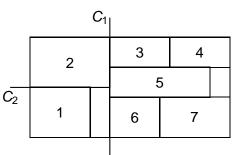
- cuts are iteratively applied
- the algorithm stops when all items are cut
- Bottom-up algorithm [Viswanathan and Bagchi, 1993]
 - items are gathered into horizontal and vertical *builds* [Wang, 1983]
 - the algorithm stops when there is only one remaining large item

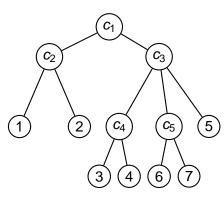
Exact methods for rectangle placement problems

Guillotine-cutting problem

Problem description

A tree representation





Exact methods for rectangle placement problems

Guillotine-cutting problem

-Problem description

A tree representation

- Vertices are related to either cuts or items
- No interesting additional information compared to the previous methods
- This representation does not lead to a different branching scheme

Exact methods for rectangle placement problems

Guillotine-cutting problem

A new graph-theoretical model

Guillotine-cutting classes

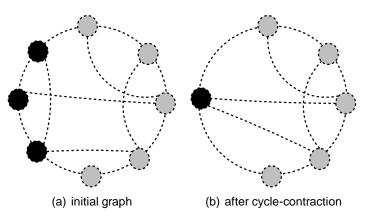
Two patterns pertain to the same guillotine-cutting class if they can be obtained by the same sequence of builds

1 ₄ 5 23	5 <u>1</u> 2	54 3	45 3	1 2	54 3	1 2
1 3	1	3	3	1	3	1
2 4 5	5 2	54	45		54	2
245	5 2	54	45 3	2	54	2
1 3	1	3	3	1	3	1
23	2	3	3	2	3	2
145	5 1	54	45	1	54	1

Exact methods for rectangle placement problems

- Guillotine-cutting problem
 - A new graph-theoretical model

Cycle-contraction



Exact methods for rectangle placement problems

Guillotine-cutting problem

A new graph-theoretical model

Guillotine graphs

Definition

Let *G* be an arc-colored graph. *G* is a *guillotine graph* if the two following conditions hold :

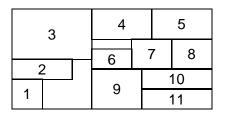
G can be reduced to a single vertex x by iterative contractions of monochromatic circuits

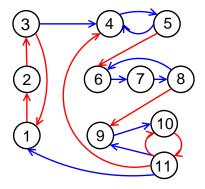
no steps are encountered where a vertex pertains to two monochromatic circuits

Exact methods for rectangle placement problems

Guillotine-cutting problem

A new graph-theoretical model

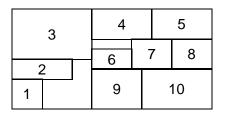


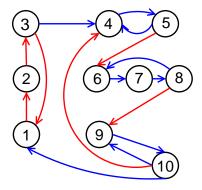


Exact methods for rectangle placement problems

Guillotine-cutting problem

A new graph-theoretical model

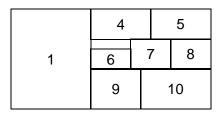


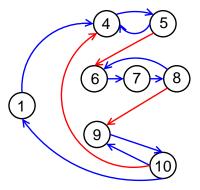


Exact methods for rectangle placement problems

Guillotine-cutting problem

A new graph-theoretical model

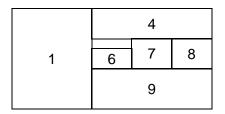


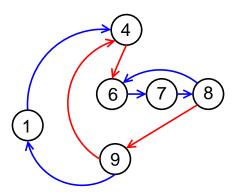


Exact methods for rectangle placement problems

Guillotine-cutting problem

A new graph-theoretical model



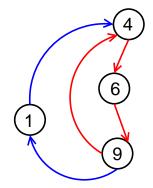


Exact methods for rectangle placement problems

Guillotine-cutting problem

A new graph-theoretical model

	4
1	6
	9

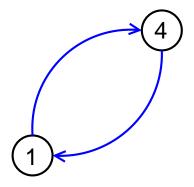


Exact methods for rectangle placement problems

Guillotine-cutting problem

A new graph-theoretical model

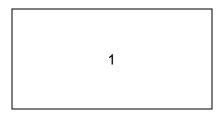
1	4



Exact methods for rectangle placement problems

Guillotine-cutting problem

A new graph-theoretical model



Exact methods for rectangle placement problems

Guillotine-cutting problem

A new graph-theoretical model

Dominant guillotine graphs

- Two configurations can be equivalent
- The order of the vertices in a circuit does not change the configuration

Definition

A guillotine graph G is dominant if in all graphs that can be obtained from G by iterative circuit contractions, vertices in all monochromatic circuits are ordered by increasing value of label.

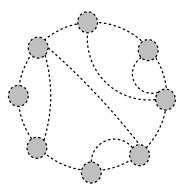
• A guillotine-cutting class is related to an unique dominant guillotine graph.

Exact methods for rectangle placement problems

Guillotine-cutting problem

A new graph-theoretical model

The combinatorial structure of a dominant guillotine graph



Exact methods for rectangle placement problems

Guillotine-cutting problem

A new graph-theoretical model

Properties of a dominant guillotine graph G

- They contain an Hamiltonian circuit and "backward edges"
- n ≤ m ≤ 2n − 2
- They can be recognized in O(n) time
- There is only one way of orienting and two ways of coloring an uncolored guillotine graph
- A dominant guillotine graph is associated with a unique guillotine-cutting class
- Computing the corresponding guillotine pattern takes *O*(*n*) time

Exact methods for rectangle placement problems

Guillotine-cutting problem

A constraint-programming based method

Computational experiments

1		IMVB		IGG			
instance	nodes	cpu (s)	cpu x MIPS	nodes	cpu (s)	cpu x MIPS	
SCP2	1797	3.4	857	80	0.2	2683	
SCP3	3427	6.8	1714	61	0.3	3714	
SCP4	6356	78.6	19807	759	0.7	9699	
SCP6	8012	54.6	13759	22	0.1	1651	
SCP7	1195	1.8	454	46	0.2	2683	
SCP11	11036	221.5	55818	25	0.2	2889	
SCP13	4359	39.5	9954	73	0.1	1651	
SCP14	4782	41.7	10508	63	0.4	4746	
SCP16	85627	654.8	165010	2253	2.7	35081	
SCP17	13668	227.3	57280	1361	1.7	22493	
SCP18	22087	321.5	81018	3419	4.2	54892	
SCP19	39550	1794.3	452164	2733	2.3	30954	
SCP20	36577	874.3	220324	1909	1.7	22493	
SCP21	26748	1757.6	442915	8624	8.0	105450	
SCP22	40909	606.0	152712	640	2.6	34875	
SCP23	29512	691.9	174359	1754	1.4	18779	
SCP24	117013	6265.0	1578780	12402	10.7	140738	
SCP25	69434	3735.8	941422	6485	10.7	141563	
Avg.	20972	695.2	175188	1721	2.0	26786	

Exact methods for rectangle placement problems

Guillotine-cutting problem

A constraint-programming based method

Future work

Future work

- A global "guillotine" constraint in a CP solver?
- Lower bounds/feasibility tests based on the model?
- Designing heuristics based on the new model

Exact methods for rectangle placement problems

Summary and some issues

Introduction

- 2 Heuristics / feasibility tests
- 3 Exact methods
- Guillotine-cutting problem

Exact methods for rectangle placement problems

Summary and some issues

Summary

- a good heuristic and feasibility tests are mandatory
- constraint-programming techniques are well suited to rectangle placement problems
- packing and scheduling problems are tightly linked
- the guillotine constraint leads to totally different models

Exact methods for rectangle placement problems

Summary and some issues

Some issues

- "real" two-dimensional feasibility tests
- a better link with mathematical programming
- taking into account the information during the search
- embedding the guillotine condition as a global constraint