
On Translating MiniZinc Constraint Models into
Fitness Functions for Evolutionary Algorithms:
Application to Continuous Placement Problems

Thierry Martinez and François Fages

Inria Paris-Rocquencourt, Team Lifeware, France

Abstract. MiniZinc is a solver-independent constraint modeling lan-
guage which is increasingly used in the constraint programming com-
munity. It can be used to compare different solvers which are currently
based on either constraint programming, Boolean satisfiability or mixed
integer linear programming. In this paper we show how MiniZinc models
can be compiled into fitness functions for evolutionary algorithms. More
specifically, we describe the translation of FlatZinc models into fitness
functions over the reals and their use in the Covariance Matrix Adapta-
tion Evolution Strategy (CMA-ES) solver. We illustrate this approach,
and evaluate it, on the modeling and solving of complex shape continuous
placement problems.

1 Introduction

MiniZinc [11] is a medium-level constraint modeling language. It is high-level
enough to express most constraint problems easily, but low-level enough to be
mapped onto existing solvers easily and consistently. It is increasingly used as
a standard by the Constraint Programming community. FlatZinc is a low-level
solver input language that is the target language for MiniZinc. It is designed to
be easy to translate into the form required by a solver. Currently, there exist
FlatZinc parsers for mixed integer linear programming, finite domain constraint
programming and SAT solvers.

In [1], Björdal et al. present a constraint-based local search backend for
MiniZinc and show that it produces competitive results on the 2010 MiniZinc
challenge. There has been related work on the design of high-level constraint-
based modeling languages for local search and genetic algorithms. In particular
the seminal work of Van Hentenryck and Michel on Comet [9,5] showed how a
finite domain constraint model can be compiled into an objective function for
local search metaheuristics, such as Tabu search, with default neighborhoods
derived from the constraint model. In these systems, the local search solver is
limited to finite domain constraints and use neighborhoods derived from the
finite domains of the variables.

In this paper, we generalize this approach to constraints over real valued
variables and show how the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) solver [4] can be used as backend for MiniZinc for both finite domain

and real-valued variable constraint satisfaction problems. More specifically, we
show how a FlatZinc model can be translated into a fitness function for CMA-ES,
and illustrate this approach by the modeling and solving of complex continuous
placement problems for square and curved shapes.

In [8], we have shown that the non-overlap constraint between squares, cubes,
rectangles, boxes, triangles, polygons circles and spheres, can be associated with
a measure of overlap which can be used as a fitness function in CMA-ES for
packing mixed shapes in a bin of minimal area (or volume), with an interesting
trade-off between generality and efficiency. On Korfs benchmark of discrete con-
secutive sizes square packing problems, for which the optimal costs are known
up to 32 squares, we have shown that the solutions computed by CMA-ES are
typically at 14% from the optimal cost, with a computation time comparable to
the time used by the best exact methods for finding an optimal solution [6]. On a
benchmark of consecutive sizes circle packing problems, CMA-ES finds solutions
at 2% of the best known costs obtained by running the three global optimization
methods reported in Castillo et al. [2]. In [10], Salas and Chabert show that the
overlap measures which were defined in an ad hoc manner in [8], can be defined
with a numerical algorithm that automatically measures the penetration depth
of two objects of virtually any shape defined by conjunction and disjunction of
non-linear inequalities.

In this paper, we give MiniZinc definitions for the penetration depths between
polygons and circles, and use them to compute the fitness function associated
to a FlatZinc model. The rest of the paper is organized as follows. In the next
section we show how circle packing and general mixed shape continuous place-
ment problems can be modeled in MiniZinc. More specifically, we use ClpZinc,
a higher-level extension of MiniZinc with records and Horn clauses to ease mod-
eling, including the expression of search strategies [7] and here the complex
definition of penetration depths between objects. In Section 3 we describe the
translation of a FlatZinc model into a fitness function over the reals, using sim-
ple formula for circles and Minkowski sums for the penetration depth between
polygons [3]. Then in Section 4, we report on the performance results obtained
through the compilation chain from ClpZinc, MiniZinc, FlatZinc to CMA-ES, on
some complex shape packing problems of [8]. Finally, we conclude on the general
perspective opened by this approach for compiling MiniZinc constraint models
to stochastic continuous optimization solvers.

2 Modeling Continuous Placement Problems in MiniZinc

2.1 Packing Circles in MiniZinc

MiniZinc has support for float variables and is therefore a suitable language for
modeling continuous problems such as continuous placement problems. Variables
in a continuous placement problem are the positions of the object, i.e. (x, y) on a
plane, (x, y, α) if we consider rotations, (x, y, z) in the space, etc.. For instance,
the following MiniZinc model describes the problem of packing three circles of
radius 1 in a circle of radius 3.

array[1..3] of var float: x;
array[1..3] of var float: y;
var float: radius;
constraint pow(x[2] - x[1], 2.0) + pow(y[2] - y[1], 2.0) > 4.0;
constraint pow(x[3] - x[1], 2.0) + pow(y[3] - y[1], 2.0) > 4.0;
constraint pow(x[3] - x[2], 2.0) + pow(y[3] - y[2], 2.0) > 4.0;
constraint pow(x[1], 2.0) + pow(y[1], 2.0) < pow(radius - 1.0, 2.0);
constraint pow(x[2], 2.0) + pow(y[2], 2.0) < pow(radius - 1.0, 2.0);
constraint pow(x[3], 2.0) + pow(y[3], 2.0) < pow(radius - 1.0, 2.0);
radius = 3;
solve satisfy;

(x[i], y[i]) are the coordinates of the centers of the circles. The three first
constraints impose that the three circles do not overlap pairwise. This is modeled
by imposing that for each pair of circles, the (square of the) distance between
their centers is greater than (the square of) the sum of their radii (i.e. 4 =
(1 + 1)2). The last three constraints impose that all the three circles fit in the
circle of radius 3 centered on the origin, i.e. for each circle, the (square of the)
distance from the origin to the center of the circle is lesser than (the square of)
3 minus the radius of the circle (i.e. 4 = (3− 1)2).

The bounding circle radius can also be specified as objective to minimize
rather than given as input, by replacing the two last lines in the model by

constraint radius>0;
solve minimize(radius);

2.2 Packing Complex Shapes in ClpZinc

The previous example has in fact been automatically generated by ClpZinc from
the following model.

include "packing.plz";

array [1..3] of var float: x;
array [1..3] of var float: y;
var float: radius;

:- non_overlap([circle(x[i], y[i], 1.0) | i in 1..3]),
bounding_circle_lt([circle(x[i], y[i], 1.0) | i in 1..3], radius),
radius > 0,
minimize(radius).

ClpZinc1 extends MiniZinc with records and the possibility to define search
strategies [7] and relations by (terminating) Horn clauses. ClpZinc models are
expanded into MiniZinc models and can thus benefit from the compilation to
FlatZinc and a variety of constraint solvers. The ClpZinc packing library imple-
ments

– non_overlap(Shapes) for stating that the shapes in the list Shapes do not overlap
pairwise.

– bounding_circle_lt(Shapes, Radius) for stating that the shapes fit into a bound-
ing circle centered on the origin with the given radius.

– bounding_box(Shapes, X0, Y0, X1, Y1) for stating that shapes fit into the given
bounding box.

Shapes is a list of terms of the form

– circle(X, Y, Radius),
– triangle(X0, Y0, X1, Y1, X2, Y2),
– users can define their custom shapes from these two elementary shapes by

adding a new clause to the predicate shape(S, L) that unifies L with a list
of elementary shapes that compose S. E.g., squares can be described as the
combination of two triangles with the following clause.

shape(square(X, Y, Size, Angle), [
triangle(
X, Y,
X + cos(Angle) * Size, Y + sin(Angle) * Size,
X + cos(Angle) * Size + cos(Angle + pi / 2) * Size, Y + sin(Angle)

* Size + sin(Angle + pi / 2) * Size),
triangle(
X, Y,
X + cos(Angle - pi / 2) * Size, Y + sin(Angle - pi / 2) * Size,
X + cos(Angle) * Size + cos(Angle + pi / 2) * Size, Y + sin(Angle)

* Size + sin(Angle + pi / 2) * Size)]).

3 Compiling MiniZinc Models into Fitness Functions

In order to use a continuous optimization solver such as CMA-ES, a FlatZinc
model needs be compiled into a fitness function over the reals. The fitness func-
tion associates a cost to the violation of each constraint of the FlatZinc model
for any given valuation of the variables. The optimization procedure finds values
for the variables which minimize the cost at least locally.

The FlatZinc model is first transformed to a pair (c, e) where c is a constraint
expression over the following grammar, with the obvious semantics, and e is an
expression carrying the objective.

c ::= c ∧ c | c ∨ c | c⇒ c | e < e | e ≤ e | e = e | let x := e in c

For instance, let us consider the model below.

1 http://lifeware.inria.fr/˜tmartine/clp2zinc/

http://lifeware.inria.fr/~tmartine/clp2zinc/

var float: x;
var float: y;

constraint x + y > 4.0;
constraint x < 3.0;
constraint y < 2.0;

solve minimize x * y;

This model is transformed by the mzn2fzn compiler to the following FlatZinc
model.

array [1..2] of float: X_INTRODUCED_2 = [-1.0,-1.0];
var float: x:: output_var;
var float: y:: output_var;
var float: X_INTRODUCED_3 ::var_is_introduced :: is_defined_var;
constraint float_lin_lt(X_INTRODUCED_2,[x,y],-4.0);
constraint float_lt(x,3.0);
constraint float_lt(y,2.0);
constraint float_times(x,y,X_INTRODUCED_3):: defines_var(X_INTRODUCED_3);
solve minimize X_INTRODUCED_3;

We associate to this model the following constraint expression, which displays
the conjunction of the three first constraints, together with the objective x× y.

−.1.0× x +−1.0× y < −4.0 ∧ x < 3.0 ∧ y < 2.0

The constraint expression is then transformed into a violation degree induc-
tively over the structure of the expression.

v(c ∧ c′) = v(c) + v(c′) v(c ∨ c′) = min(v(c), v(c′)) v(c⇒ c′) = 1c × v(c′)

Each elementary hard constraint is associated to a specific cost ci that turns
it into a soft constraint. The cost of e < e′ and e ≤ e′ is max(e − e′, 0). The
cost of e = e′ is |e − e′|. In the context of continuous packing, if the non-
overlapping constraint is expressed in terms of penetration depth, the associated
cost will naturally guide the continuous solver towards a better solution with less
overlap [8,10].

A fitness function is then generated and compiled together with the CMA-ES
optimization loop, in C. 1c × v(c′) is mapped to the production of conditional
if block, for models that use reification.

The fitness function is expected to return a violation cost for the constraints.
If there is no hard constraint, this cost is the value of the objective in case
of minimization, or its opposite in case of maximization. We provide several
methods for aggregating the costs that result from the transformation of hard
constraints into soft constraints through MiniZinc annotations.

– weighted constraints: the default method, which may be explicited with
the annotation solve satisfy :: weighted;. Individual constraint costs ci are
summed up with multiplicative coefficients:

∑
i wici. Weights can be tuned

by marking constraints with the annotation :: weight(w).
– fuzzy: the maximum of all constraint costs ci is considered for minimization

(mini wici).

– probabilistic: the product of all constraint costs ci is considered for mini-
mization (

∏
i wici).

It is worth noticing that these methods are a mere syntactic sugar for expressing
the objective function: the modelling language is expressive enough for expressing
the calculation of the cost directly into the objective function. For example, here
is a reformulation of the “three circles” example as a pure minimization problem
with no hard constraints, with a weight of 1000 for each hard constraint:

array[1..3] of var float: x;
array[1..3] of var float: y;
var float: radius;
solve minimize (radius
+ 1000 * max(0, 4.0 - pow(x[2] - x[1], 2.0) + pow(y[2] - y[1], 2.0))
+ 1000 * max(0, 4.0 - pow(x[3] - x[1], 2.0) + pow(y[3] - y[1], 2.0))
+ 1000 * max(0, 4.0 - pow(x[3] - x[2], 2.0) + pow(y[3] - y[2], 2.0))
+ 1000 * max(0, pow(x[1], 2.0) + pow(y[1], 2.0) - pow(radius - 1.0, 2.0))
+ 1000 * max(0, pow(x[2], 2.0) + pow(y[2], 2.0) - pow(radius - 1.0, 2.0))
+ 1000 * max(0, pow(x[3], 2.0) + pow(y[3], 2.0) - pow(radius - 1.0, 2.0)));

In the context of continuous packing problems, we need to express the pen-
etration depth between two objects. Between circles, the penetration depth can
be expressed with simple formulas as shown in Section 2.1. Between polygons,
the definition is harder. For instance, the penetration depth between two convex
polygons is the distance between the origin and the Minkowski sum of the two
convex polygons [3]. We don’t know simpler method for computing the pene-
tration depth between two triangles. The Minkowski sum between two convex
polygons is a convex polygon which can be obtained by sorting the edges of the
two input polygons by increasing slope. This can be defined in ClpZinc as follows

minkowski_sum(Polygon0, Polygon1, PolygonMinkowski) :-
edges(Polygon0, Edges0),
edges(Polygon1, Edges1),
permutation(Edges0 ++ Edges1, EdgesMinkowski),
increasing_slope(EdgesMinkowski),
polygon_from_edges(EdgesMinkowski, PolygonMinkowski).

ClpZinc models with choice-points are compiled into MiniZinc models via
the use of reification [7]. Such a ClpZinc definition generates a reified constraint
in MiniZinc which enumerates over the permutations of the edges. The reified
constraints are translated into cost functions as described above in this section.

4 Evaluation Results with the CMA-ES Solver

We show in this section how the packing examples of [8] can be reimplemented
declaratively in ClpZinc. Here is the code for packing 10 circles of radii i−1/2 for
i from 1 to 10.

include "packing.plz";

int: n;
array [1 .. n] of var float: x;
array [1 .. n] of var float: y;
var float: radius;

:-
Shapes = [circle(x[i], y[i], pow(i, -1/2)) | i in 1 .. n],
non_overlap(Shapes),
bounding_circle_lt(Shapes, radius),
radius > 0,
minimize(radius).

n = 10;

Here is the code for packing 20 equilateral triangles with sides of length i for
i from 1 to 20.

include "packing.plz";

float: pi;
int: n;
array [1 .. n] of var float: x;
array [1 .. n] of var float: y;
array [1 .. n] of var float: a;
var float: x0;
var float: y0;
var float: x1;
var float: y1;

shape(equilateral_triangle(X, Y, Size, Angle), [
triangle(

X, Y,
X + cos(Angle + pi / 6.0) * Size, Y + sin(Angle + pi / 6.0) * Size,
X + cos(Angle - pi / 6.0) * Size, Y + sin(Angle - pi / 6.0) * Size)]).

:-
Shapes = [equilateral_triangle(x[i], y[i], i, a[i]) | i in 1 .. n],
non_overlap(Shapes),
bounding_box(Shapes, x0, y0, x1, y1),
minimize((x1 - x0) * (y1 - y0)).

n = 20;
pi = 4.0 * atan(1.0);

The following pictures illustrate two solutions found by CMA-ES for pack-
ing the 10 circles and the 20 equilateral triangles, obtained in 25s and 19min
respectively (on a Intel(R) Xeon(R) CPU E5-1620 0 @ 3.60GHz), similarly to
[8].

5 Conclusion and Perspectives

In this paper we have shown how a MiniZinc constraint model over not only
integer but also real-valued variables can be translated into a fitness function
over the reals and can be solved using a stochastic optimization procedure such
as CMA-ES [4].

This approach has been illustrated by the modeling of complex mixed shape
continuous placement problems and their solving using CMA-ES. More specif-
ically, we have used ClpZinc, an extension of MiniZinc with records and Horn
clauses, to define the penetration depths between objects, using Minkowski sums
for polygons, and the compilation chain from ClpZinc to MiniZinc and FlatZinc
using reified constraints. First evaluation results have shown the absence of sig-
nificant overhead when compared to their direct encoding in CMA-ES as done
in [8].

A classical difficulty in the definition of error function for a conjunction of
constraints is the normalization of the error function for each constraint. This
has been solved here by letting the model specify the objective function but
dynamic strategies inspired from previous work on Comet for instance could be
developed [9].

Our approach is general. We have focused on continuous placement prob-
lems, but our MiniZinc/CMA-ES can be applied in principle to any continuous
constraint model and also discrete domains through integrity relaxation. This
will be the topic of future work.

Acknowledgements. This work has been funded by the ANR Blanc Net-WMS-
2 grant. We would like to thank all the partners of this project for fruitful
discussions.

References

1. G. Björdal, J.-N. Monette, P. Flener, and J. Pearson. A constraint-based local
search backend for minizinc. Constraints, 20(3):325–345, 2015.

2. I. Castillo, F. J. Kampas, and J. D. Pintér. Solving circle packing problems by
global optimization: Numerical results and industrial applications. European Jour-
nal of Operational Research, 191(3):786–802, 2008.

3. D. Dobkin, J. Hershberger, D. Kirkpatrick, and S. Suri. Computing the
intersection-depth of polyhedra. Algorithmica, 9:518–533, 1993.

4. N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolu-
tion strategies. Evolutionary Computation, 9(2):159–195, 2001.

5. P. V. Hentenryck and L. Michel. Synthesis of constraint-based local search algo-
rithms from high-level models. In Proc. AAAI, pages 273–278, 2007.

6. E. Huang and R. E. Korf. Optimal rectangle packing: An absolute placement
approach. Journal of Artificial Intelligence Research, 46:47–87, 2012.

7. T. Martinez, F. Fages, and S. Soliman. Search by constraint propagation. In
Proceedings of the 17th International Conference on Principles and Practice of
Declarative Programming, PPDP’15. ACM, 2015.

8. T. Martinez, L. Vitorino, F. Fages, and A. Aggoun. On solving mixed shapes
packing problems by continuous optimization with the cma evolution strategy.
In Proceedings of the first Computational Intelligence BRICS Congress BRICS-
CCI’13, pages 515–521. IEEE Press, Sept. 2013.

9. L. Michel and P. V. Hentenryck. The comet programming language and system.
In Proc. Principles and Practice of Constraint Programming, Lecture Notes in
Computer Science, pages 881–881, 2005.

10. I. Salas and G. Chabert. Packing curved objects. In Proceedings of the 24th
International Joint Conference on Artificial Intelligence, IJCAI’15, Buenos Aires,
Argentina, 2015.

11. The Zinc team. MiniZinc web page.
http://www.minizinc.org/.

	On Translating MiniZinc Constraint Models into Fitness Functions for Evolutionary Algorithms: Application to Continuous Placement Problems
	Thierry Martinez and François Fages

