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Abstract. Memory testing of an integrated circuit is a real industrial
challenge, and presents several interesting original combinatorial opti-
mization problems. A simple model for testing a set of memories, tak-
ing into account their test time and power, is first presented. Feasible
solutions consist on grouping memories into lots of a maximum fixed
power. The aim is to minimize the overall test time for a unique sequen-
tial tester. The problem includes the classical Bin-Packing problem and
thus is NP -hard. A simple lower bound of the overall test time is first
obtained using a continuous version of the problem. A simple heuris-
tic issued from a Next Fit Decreasing strategy is then presented and its
performance ratio is proved to be bounded by 2.
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1 Introduction

Nowadays, any integrated circuit (SOC in short for System On Chip) leaving a
supply chain is tested automatically. In order to reduce the time to market of
a product this testing step has to be as cheap as possible with the least time
consumption.

For that purpose, an external tester sends data to the circuit, and compares
its answers to those normally expected. A set of components dedicated to the
realization of this test phase is generally added to the circuit. Part of the process-
ing is then carried out directly by the chip, significantly speeding the industrial
process. Those compoments are called BIST (Built In Self Test).

Memory cores usually occupy a significant area of the SOC and are often
designed with most aggressive rules. Thus, testing all these memories became
a real challenge and presented original combinatorial problems. Two costs are
usually considered in this phase: the total testing time of the memories of a chip
and power consumption due to the test procedure. The idea here is to group the
overall memories of a chip into different lots that are evaluated separately; each
lot has its own testing time and required an amount of power to be tested.

Various grouping schemes have been proposed in the literature. In this work,
we are interested only in the optimization criteria with respect to both power and



time. The pioneering work on memory BIST sharing was presented by [9]. The
author proposed a new BIST sharing architecture together with a test scheduling
that does not exceed power dissipation limit during test procedure. Several tech-
niques for test scheduling were investigated later. In [7] the authors adressed the
issue of test scheduling under power and area constraints. They gave a greedy
algorithm with a time complexity of O(n3) to select grouping memories. Nu-
merical results are given for a SOC with less than 10 memories. In [1] the test
scheduling optimization problem is modeled as an open-shop scheduling prob-
lem with m machines, and solved by using a Mixed Integer Linear Programming
(MILP) formulation to obtain the optimal schedule. Based on the same assump-
tion, a power constrained MILP model for the precedence and preemptive test
scheduling problems has also been presented in [2]. In [5] the authors formulated
the problem as a two dimensional Bin-Packing problem by fixing bounds for the
maximum test power and test time. Then, they solved it heuristically by using a
Best Fit heuristic algorithm. A survey of techniques used and numerical results
can be found in [8].

The main flaw of all the methods adressed previously is that the complexity
of the algorithms developed drastically limits the size of the problem considered.
The aim of our work is to present a simple model for a sequential BIST tester
and efficient heuristics to solve it.

Our paper is organized as follows. In Section 2, we define the memory group-
ing problem and formulate it as a generalized version of Bin-Packing. Section 3
is devoted to the determination of an optimal solution for a continuous version
of our problem, leading to a nice lower bound of the minimum overall test time.
Next Fit Decreasing heuristics are studied in Section 4. It is proved that, if the
memories are allocated to lots following non increasing powers, the performance
ratio of the built solution may be not bounded. However, it is also proved that
this ratio is bounded by 2 if memories are considered following non increasing
test times. Section 5 is our conclusion.

2 Problem formulation

An instance Π of the problem tackled here is defined by a set L of n memories
Mi, i ∈ {1, · · · , n}, each of them defined by a couple of positive integers (ti, pi).
ti represents the time needed by the tester to evaluate Mi, pi is its associated
power. An integer value Pmax corresponding to the power of the tester is also
fixed. Lastly, Pmax should satisfy Pmax ≥ P for P = maxi∈{1,··· ,n} pi.

Memories are grouped into bins (or lots) to be tested. A bin B ⊆ L has a

test time TB = max
Mi∈B

ti and a power PB =
∑

Mi∈B

pi. Our problem consists in

partitioning the set of memories L into a set of bins B such that:

– the power of each bin is bounded by Pmax, i.e. ∀B ∈ B, PB ≤ Pmax;

– the overall test time TB =
∑

B∈B

TB is minimum.



Mi M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13

ti 6 6 6 4 4 4 4 4 3 3 2 2 2
pi 2 1 1 3 2 2 2 1 3 1 3 1 3

Table 1. Test times and powers of an instance of Π . We also suppose that Pmax = 6.

As example, let consider the instance of Π reported by Table 1. A feasible
solution is presented by Figure 1. Corresponding bins are B1 = {1, 2, 3}, B2 =
{4, 5}, B3 = {6, 7, 8}, B4 = {9, 10}, B5 = {11, 12} and B6 = {13}. Their test
time are TB1

= 6, TB2
= 4, TB3

= 4, TB4
= 3, TB5

= 2 and TB6
= 2. Total test

time is TB = 21.

Pmax = 6
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Fig. 1. A feasible solution for the instance of Π given by Table 1.

The sub-problem of Π for which memories are of equal test time (t1 =
t2 = · · · = tn) is clearly a Bin-Packing problem. We conclude that Π is NP-

hard [4], and thus the determination of approximation algorithms is of interest.
To our best knowledge, Π has never been adressed before. However, several
approximation algorithms that have been proposed to solve the classical Bin-

Packing problem [3] constituted a starting point for our study.
Π can also be formulated as a batch scheduling problem [6] without set-

up time on a single machine. Tasks correspond to memories. Each task i ∈
{1, · · · , n} has a duration equal to the test time ti. Batches are carried out
sequentially. Pmax is the limit size of a batch.

3 An optimal solution for the continuous problem

Let consider in this section a continuous version Πcont of the initial problem
Π where a memory can be placed in several bins. The power of a memory Mi

belonging to bins Bcont
1 , · · · , Bcont

α is split into α positive values p1
j , · · · , pα

j with
∑α

i=1 pi
j = pj . This extension of the problem has clearly no application in our

industrial context. However, we build easily an optimal solution Bcont of Πcont,
providing a nice lower bound for the overall test time of Π .



Let us consider a feasible solution Bcont for the continuous version Πcont built
as follows where each memory is split into at most two bins. Let suppose that
memories are numbered as t1 ≥ t2 ≥ · · · ≥ tn. For any value i ∈ {1, · · · , n + 1},

the sequence ui is defined as ui =
∑i−1

j=1 pj and we set k = ⌈ un+1

Pmax
⌉ the number

of bins Bcont
α , α ∈ {1, · · · , k} built as:

Bcont
α = {i ∈ {1, · · · , n}, (α − 1)Pmax − pi < ui < αPmax}.

The corresponding values of the memory power are set as follows:

∀i ∈ Bcont
α , pα

i =







pi if (α − 1)Pmax ≤ ui ≤ αPmax − pi

ui+1 − (α − 1)Pmax if ui < (α − 1)Pmax

αPmax − ui otherwise.

For the example presented in Table 1, memories are numbered following non
increasing test times. A representation of Bcont is pictured by Figure 2. Powers of
memories belonging to two bins are p1

4 = 2, p2
4 = 1, p2

7 = 1, p3
7 = 1, p4

13 = 2 and
p5
13 = 1. Test times of each continuous bin are TBcont

1
= 6, TBcont

2
= 4, TBcont

3
= 4,

TBcont
4

= 2 and TBcont
5

= 2. Thus, the overall test time is TBcont = 18.

Pmax = 6
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Fig. 2. An optimal solution Bopt for the continuous version Πcont of the instance of Π

expressed by Table 1.

Theorem 1. Bcont is an optimal solution for Πcont.

Proof. The proof is by recurrence on the number of bins k. Bcont is clearly
optimum for k = 1 since all the memories are placed in a same bin.

Let consider now an optimal solution Bopt for a minimum number of bin
k > 1. Corresponding bins are noted B

opt
1 , · · · , B

opt
k⋆ with k⋆ ≥ k. Let suppose

that B
opt
1 has a maximum test time, i.e. TB

opt

1
= maxi∈{1,··· ,n} ti. Starting from

Bopt and using simple exchange arguments, it is possible to build another optimal
solution B′opt such that, the bin with the maximum test time B

′opt
1 = Bcont

1 .
Remaining memories define another instance I of Πcont with a minimum number
of bins equal to k − 1. By recurrence, bins Bcont

2 , · · · , Bcont
k correspond to an



optimal solution for I, and thus
∑k

j=2 TBcont
j

=
∑k⋆

j=2 TB
′opt

j
. We obtained lastly

that

TBopt = TB′opt = TB
′opt

1
+

k⋆

∑

j=2

TB
′opt

j
= TBcont

1
+

k
∑

j=2

TBcont
j

= TB,

which concludes the recurrence proof.

4 Performance ratio of Next Fit Decreasing strategies

We observe that classical simple strategies for approximatively solving the Bin-

Packing problem may have a non-bounded performance ratio. These algorithms
only take into account the size of the objects, corresponding in our case to the
power of the memories. In the worst case, each new bin will contain a memory
with a maximal test time.

Let consider first Next Fit Decreasing strategy for which memories are num-
bered and treated following non increasing powers, i.e., p1 ≥ p2 ≥ · · · ≥ pn.
Each new memory Mi is placed in the current bin B. If there is no enough place,
B is closed and a new current bin is opened to receive Mi.

Theorem 2. The performance ratio of the Next Fit Decreasing strategy where

memories are considered following their non increasing power is not bounded.

Proof. Let consider an instance composed by n1 = Pmax > 1 memories of test

time ∆1 and n2 = n1×(Pmax−1) memories of test time ∆2 =
∆1

Pmax − 1
. Powers

are supposed to be unit.
A solution of Next Fit Decreasing algorithm may be obtained such as each

bin contains one memory of test time ∆1 and (Pmax − 1) of test time ∆2. The
overall test time equals T = Pmax∆1. Now, if every bin contains only memories
of same test time, the overall test time equals T opt = ∆1 +(Pmax−1)∆2 = 2∆1.

The ratio is then equal to
T

T opt
=

Pmax

2
, which is not bounded.

We study in the following the performance of the Next Fit Decreasing strategy
where memories from L are considered following their non increasing test times.
It is supposed thus that they are numbered such that t1 ≥ t2 ≥ · · · ≥ tn.

Figure 1 presents the feasible solution obtained by a Next Fit Decreasing

strategy applied to our example presented by Table 1.

Theorem 3. Let the integer K = ⌊Pmax

P−1 ⌋ − 1. The performance ratio of the

Next Fit Decreasing strategy where memories are considered following their non

increasing test times equals 1 +
1

K
.

This last bound is asymptotically tight. Indeed, consider an instance of our
problem given by n1 memories of power P , and n1 × (Pmax − P ) memories of
unit power. Test times of memories are all equal to ∆.



An optimal solution can be found by constructing n1 bins, each of them
containing one memory of power P . Remainings slots are all filled with memories
with unit power. The overall test time is here equal to T opt = n1 × ∆.

Now, a Next Fit Decreasing strategy may lead to a solution where the first
n1 bins are filled with one memory of power P and Pmax−2P +1 unit memories.
It remains n1 × (P − 1) memories of unit power that are placed into n1 ×

P−1
Pmax

bins. The overall test time is then equal to T = n1 × ∆ × (1 + P−1
Pmax

).

Setting α = Pmax

P−1 , we observe that for important values of α that 1
α(1− 1

α
)
≈

1
α
(1 + 1

α
) = 1

α
+ o( 1

α
). Thus, the ratio T

T opt = 1 + 1
α

≈ 1 + 1
α(1− 1

α
)
, and the

performance ratio is tight when α = Pmax

P−1 → +∞.

5 Conclusion and future works

Theoretical perspectives rely in the study of other approximation algorithms to
improve the performance ratio. These algorithms may be implemented and com-
pared experimentally with other more complex algorithms (as example genetic
algorithms [10]) to solve real-life instances.
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