
Constraint Programming III: Constraint Logic Programs

François Fages

INRIA Rocquencourt,

Francois.Fages@inria.fr

1. Introduction

2. Logical Background

3. Constraint Logic Programs

4. Operational and Fixpoint Semantics

5. Logical Semantics, automated deduction

6. Concurrent Constraint Languages

7. Operational and Denotational Semantics

8. Semantics in Linear Logic

François Fages 1



Part IV: Operational and Fixpoint Semantics

1. Operational semantics

compositionality

2. Fixpoint semantics of successes

lattice of X -interpretations

3. Fixpoint semantics of computed answer constraints

constrained interpretations

4. Program analysis by abstract interpretation

5. Constraint-based model checking of infinite states concurrent systems

François Fages 2



Operational semantics: CSLD Resolution

(p(t1, t2)← c′|A1, ..., An)θ ∈ P X |= ∃(c ∧ s1 = t1 ∧ s2 = t2 ∧ c
′)

(c|α, p(s1, s2), α′) −→ (c, s1 = t1, s2 = t2, c′ | α,A1, ..., An, α′)

where θ is a renaming substitution of the program clause with new

variables.

A successful derivation is a derivation of the form

G −→ G1 −→ G2 −→ ... −→ c|�

c is called a computed answer constraint for G.

François Fages 3



∧-Compositionality of CSLD-derivations

Lemma 1 (∧-compositionality) c is a computed answer for the goal

(d|A1, ..., An) iff there exist computed answers c1, ..., cn for the goals

true|A1, ..., true|An, such that c = d ∧
∧n

i=1 ci is satisfiable.

(⇐) d|A1, ..., An →
∗ d ∧ c1|A2, ..., An...→

∗ d ∧ c1 ∧ ... ∧ cn|�.

(⇒) By induction on the length l of the derivation. If l = 1 we have

d|A→ c|� hence true|A1 → c1|� with c = d ∧ c1.

Otherwise, suppose A1 is the selected atom, there exists a rule

(A1 ← d1|B1, ..., Bk) ∈ P such that

d|A1, ..., An → d ∧ d1|B1, ..., Bk, A2, ..., An →
∗ c|�. By induction, there

exist computed answers e1, ..., el, c2, ..., cn for the goals B1, ..., Bl, A2, ..., An

such that c = d ∧ d1 ∧
∧l

i=1 ei ∧
∧n

j=2 cj . Now let c1 = d1 ∧
∧l

i=1 ei, c1 is a

computed answer for true|A1.

Corollary 2 Independance of the selection strategy.

François Fages 4



Operational Semantics of CLP(X ) Programs

Observation of the sets of projected computed answer constraints

O(P ) = {(∃X c)|A : true|A −→∗ c|�, X |= ∃(c), X = V (c) \ V (A)}

Program equivalence: P ≡ P ′ iff O(P ) = O(P ′) iff for every goal G, P and

P ′ have the same sets of computed answer constraints.

Finer observables: the multisets of computed answer constraints

or the sets of succesful CSLD derivations (equivalence of traces)

More abstract observable: the set of goals having a success

(theorem proving versus programming point of view).

François Fages 5



Operational Semantics of CLP(X ) Programs

Observation of computed answer constraints

O2(P ) = {c|A : true|A −→∗ c|�, X |= ∃(c)}

P ≡2 P
′ iff for every goal G, P and P ′ have the same sets of computed

answer constraints.

Observation of ground successes

O1(P ) = {Aρ ∈ BX : true|A −→∗ c|�, X |= cρ}

P ≡1 P
′ iff P and P ′ have the same ground success sets, iff for every goal

G, G has a CSLD refutation in P iff G has one in P ′.

François Fages 6



1. Fixed Point Semantics

Let (S,≤) be a partial order. Let X ⊆ S be a subset of S.

A upper bound of a X is an element a ∈ S such that ∀x ∈ X x ≤ a.

The maximum element of X, if it exists, is the unique upper bound of X

belonging to X.

The least upper bound of X, if it exists, is the minimum of the upper

bounds of X.

A sup-semi-lattice is a partial order such that every finite part admits a

least upper bound.

A lattice is a sup-semi-lattice and an inf-semi-lattice.

A chain is an increasing sequence x1 ≤ x2 ≤ ....

A partial order is complete if every chain admits a least upper bound.

A function f : S → S is monotonic if x ≤ y ⇒ f(x) ≤ f(y).

continuous if f(lub(X)) = lub(f(X)) for every chain X.

François Fages 7



Fixpoint theorems

Theorem 3 (Knaster-Tarski) Let S be a complete partial order. Let

f : S → S be a continuous operator over S. Then f admits a least fixed

point lfp(f) = f ↑ ω.

Proof: First, as f is continuous, f is monotonic, hence

⊥ ≤ f(⊥) ≤ f(f(⊥)) ≤ ... forms an increasing chain. Let

a = lub({fn(⊥)|n ∈ N}) = f ↑ ω. By continuity

f(a) = lub({fn+1(⊥) | n ∈ N}) = a, hence a is a fixed point of f .

Let e be any fixed point of f . We show that for all integer n, fn(⊥) ≤ e, by

induction on n. Clearly ⊥ ≤ e. Furthermore if fn(⊥) ≤ e then by

monotonicity, fn+1(⊥) ≤ f(e) = e.

Thus fn(⊥) ≤ e for all n, hence a ≤ e. �

François Fages 8



Least Post-Fixed Point

Theorem 4 Let S be a complete sup-semi-lattice. Let f be a continuous

operator over S. Then f admits a least post-fixed point (i.e. an element e

satisfying f(e) ≤ e) which is equal to lfp(f).

Proof: Let g(x) = lub(x, f(x)).

An element e is a post fixed point of f , i.e. f(e) ≤ e, if and only if e is a

fixed point of g, g(e) = e.

Now g is continuous, hence lfp(g) is the least fixed point of g and the least

post-fixed point of f .

Furthermore, lfp(g) = lub{fn(⊥)} = lfp(f). �

François Fages 9



Fixpoint semantics of O1

Consider the complete lattice of X -interpretations (2BX ,⊆)

The bottom element is the empty X -interpretation (all atoms false)

The top element is BX (all atoms true).

A chain X is an increasing sequence I1 ⊆ I2 ⊆ ...

lub(X) =
⋃

i≥1 Ii.

Define the semantics O1(P ) as the least solution of a fixpoint equation over

2BX : I = T (I).

François Fages 10



T
X

P
immediate consequence operator

TX
P : 2BX → 2BX is defined by:

TX
P (I) = {Aρ ∈ BX | there exists a renamed clause in normal form

(A← c|A1, ..., An) ∈ P, and a valuation ρ s.t.

X |= cρ and {A1ρ, ..., Anρ} ⊆ I}}

Example:

append(A,B,C):- A=[], B=C.

append(A,B,C):- A=[X|L], C=[X|R], append(L,B,R).

TH

P (∅) = {append([], B, B) | B ∈ H}

TH

P (TH

P (∅)) = TH

P (∅) ∪ {append([X], B, [X|B]) | X, B ∈ H}

TH

P (TH

P (TH

P (∅))) = TH

P (TH

P (∅)) ∪ {append([X, Y ], B, [X, Y |B]) | X, Y, B ∈ H}

François Fages 11



Continuity of T
X

P
operator

Proposition 5 TX
P is a continuous operator on the complete lattice of

X -interpretations.

Proof: Let X be a chain of X -interpretations.

Aρ ∈ TX
P (lub(X)),

iff (A← c|A1, ..., An) ∈ P , X |= cρ and {A1ρ, ..., Anρ} ⊂ lub(X),

iff (A← c|A1, ..., An) ∈ P , X |= cρ and {A1ρ, ..., Anρ} ⊂ I, for some I ∈ X

(as X is a chain)

iff Aρ ∈ TX
P (I) for some I ∈ X,

iff Aρ ∈ lub(TX
P (X)). . �

Corollary 6 TX
P admits a least (post) fixed point TX

P ↑ ω.

François Fages 12



Full abstraction

Let F1(P ) = lfp(TX
P ) = TX

P ↑ ω = ...TX
P (TX

P (∅))...

Theorem 7 [JL87] F1(P ) = O1(P ).

F1(P ) ⊆ O1(P ) is proved by induction on the powers n of TX
P . n = 0 is

trivial. Let Aρ ∈ TX
P ↑ n, there exists a rule (A← c|A1, ..., An) ∈ P,

s.t. {A1ρ, ..., Anρ} ⊆ T
X
P ↑ n− 1 and X |= cρ. By induction

{A1ρ, ..., Anρ} ⊆ O1(P ). By definition of O1 we get Aρ ∈ O1(P ).

O1(P ) ⊆ F1(P ) is proved by induction on the length of derivations.

Successes with derivation of length 0 are ground facts in TX
P ↑ 1. Let

Aρ ∈ O1(P ) with a derivation of length n. By definition of O1 there exists

(A← c|A1, ..., An) ∈ P s.t. {A1ρ, ..., Anρ} ⊆ O1(P ) and X |= cρ. By

induction {A1ρ, ..., Anρ} ⊆ F1(P ). Hence by definition of TX
P we get

Aρ ∈ F1(P ).

François Fages 13



T
X

P
and X models

Proposition 8 I is a X -model of P iff I is a post-fixed point of TX
P ,

TX
P (I) ⊆ I.

Proof: I is a X -model of P ,

iff for each clause A← c|A1, ..., An ∈ P and for each X -valuation ρ, if

X |= cρ and {A1ρ, ..., Anρ} ⊆ I then Aρ ∈ I,

iff TX
P (I) ⊆ I. �

Theorem 9 (Least X -model) [JL87] Let P a constraint logic program

on X . P has a least X -model, denoted by MX
P satisfying:

MX
P = F1(P )

Proof: F1(P ) = lfp(TX
P ) is also the least post-fixed point of TX

P , thus by

8, lfp(TX
P ) is the least X -model of P . �

François Fages 14



2. Fixpoint semantics of O2

Consider the set of constrained atoms

B = {c|A : A is an atom and X |= ∃(c)} modulo renaming.

Consider the lattice of constrained interpretations (2B,⊆).

For a constrained interpretation I, let us define the closed X -interpretation:

[I]X = {Aρ : there exists a valuation ρ and c|A ∈ I s.t. X |= cρ}.

Define the semantics O2(P ) as the least solution of a fixpoint equation over

2B.

François Fages 15



Non-ground immediate consequence operator

SX
P : 2B → 2B is defined as:

SX
P (I) = {c|A ∈ B | there exists a renamed clause in normal form

(A← d|A1, ..., An) ∈ P, and constrained atoms

{c1|A1, ..., cn|An} ⊆ I, s.t. c = d ∧
∧n

i=1 ci is X -satisfiable}.

Proposition 10 For any B-interpretation I, [SX
P (I)]X = TX

P ([I]X ).

Proof: Aρ ∈ [SX
P (I)]X

iff (A← d|A1, ..., An) ∈ P , c = d ∧
∧n

i=1 ci, X |= cρ and

{c1|A1, ..., cn|An} ⊂ I

iff (A← d|A1, ..., An) ∈ P , c = d ∧
∧n

i=1 ci, X |= cρ and

{A1ρ, ..., Anρ} ⊂ [I]X

iff Aρ ∈ TX
P ([I]X ). �

François Fages 16



Continuity of S
X

P
operator

Proposition 11 SX
P is continuous.

Proof: Let X be a chain of constrained interpretations.

c|A ∈ SX
P (lub(X)),

iff (A← d|A1, ..., An) ∈ P , c = d ∧
∧n

i=1 ci, X |= ∃(c) and

{c1|A1, ..., cn|An} ⊂ lub(X).

iff (A← d|A1, ..., An) ∈ P , c = d ∧
∧n

i=1 ci, X |= ∃(c) and

{c1|A1, ..., cn|An} ⊂ I, for some I ∈ X (as X is a chain)

iff c|A ∈ SX
P (I) for some I ∈ X, iff c|A ∈ lub(SX

P (X)). . �

Corollary 12 SX
P admits a least (post) fixed point

F2(P ) = lfp(SX
P ) = SX

P ↑ ω.

François Fages 17



Example CLP(H)

append(A,B,C):- A=[], B=C.

append(A,B,C):- A=[X|L], C=[X|R], append(L,B,R).

SH

P ↑ 0 = ∅

SH

P ↑ 1 = {A = [], B = C|append(A, B, C)}

SH

P ↑ 2 = SH

P ↑ 1∪

{A = [X|L], C = [X|R], L = [], B = R|append(A, B, C)}

= SH

P ↑ 1 ∪ {A = [X], C = [X|B]|append(A, B, C)}

SH

P ↑ 3 = SH

P ↑ 2 ∪ {A = [X, Y ], C = [X, Y |B]|append(A, B, C)}

SH

P ↑ 4 = SH

P ↑ 3 ∪ {A = [X, Y, Z], C = [X, Y, Z|B]|append(A, B, C)}

... = ...

François Fages 18



Relating S
X

P
and T

X

P
operators

Theorem 13 [JL87] For every ordinal α, TX
P ↑ α = [SX

P ↑ α]X .

Proof: The base case α = 0 is trivial. For a successor ordinal, we have

[SX

P ↑ α]X = [SX

P (SX

P ↑ α − 1)]X ,

= TX

P ([SX

P ↑ α − 1]X ) by 10,

= TX

P (TX

P ↑ α − 1) by induction,

= TX

P ↑ α.

For a limit ordinal, we have

[SX

P ↑ α]X = [
S

β<α
SX

P ↑ β]X

=
S

β<α
[SX

P ↑ β]X ,

=
S

β<α
TX

P ↑ β by induction,

= TX

P ↑ α. �

François Fages 19



Full abstraction w.r.t. computed constraints

Theorem 14 (Theorem of full abstraction) [GL91] O2(P ) = F2(P ).

Proof: F2(P ) ⊆ O2(P ) is proved by induction on the powers n of SX
P .

n = 0 is trivial. Let c|A ∈ SX
P ↑ n, there exists a rule

(A← d|A1, ..., An) ∈ P, s.t. {c1|A1, ..., cn|An} ⊆ S
X
P ↑ n− 1, c = d ∧

∧n
i=1

and X |= ∃c. By induction {c1|A1, ..., cn|An} ⊆ O2(P ). By definition of O2

we get c|A ∈ O2(P ).

O2(P ) ⊆ F2(P ) is proved by induction on the length of derivations.

Successes with derivation of length 0 are facts in SX
P ↑ 1. Let c|A ∈ O2(P )

with a derivation of length n. By definition of O2 there exists

(A← d|A1, ..., An) ∈ P s.t. {c1|A1, ..., cn|An} ⊆ O2(P ), c = d ∧
∧n

i=1 and

X |= ∃c. By induction {c1|A1, ..., cn|An} ⊆ F2(P ). Hence by definition of

SX
P we get Aρ ∈ F2(P ). �

François Fages 20



3. Program analysis by abstract interpretation

SH
P ↑ ω captures the set of computed answer constraints with P ,

nevertheless this set may be infinite and

it may contain too much information for proving some properties of the

computed constraints.

Abstract interpretation [Cousot78] is a method for proving properties of

programs without handling irrelevant information.

The idea is to replace the real computation domain by an abstract

computation domain which retains sufficient information w.r.t. the property

to prove.

François Fages 21



Groundness analysis by abstract interpretation

Consider the CLP(H) append program

append(A,B,C):- A=[], B=C.

append(A,B,C):- A=[X|L], C=[X|R], append(L,B,R).

What is the groundness relation between arguments after a success in

append?

The term structure can be abstracted by a boolean structure which

expresses the groundness of the arguments.

We thus associate a CLP(Bool) abstract program:

append(A,B,C):- A=true, B=C.

append(A,B,C):- A=X/\L, C=X/\R, append(L,B,R).

Its least fixed point computed in at most 23 steps will express the

groundness relation between arguments of the concrete program.

François Fages 22



Groundness analysis (continued)

SBool
P ↑ 0 = ∅

SBool
P ↑ 1 = {A = true,B = C|append(A,B,C)}

SBool
P ↑ 2 = SBool

P ↑ 1∪

{A = X ∧ L,C = X ∧R,L = true,B = R|append(A,B,C)}

= SBool
P ↑ 1 ∪ {C = A ∧B|append(A,B,C)}

SBool
P ↑ 3 = SBool

P ↑ 2∪

{A = X ∧ L,C = X ∧R,R = X ∧B|append(A,B,C)}

= SBool
P ↑ 2 ∪ {C = A ∧B|append(A,B,C)}

= SBool
P ↑ 2 = SBool

P ↑ ω

In a success of append(A,B,C) C is ground if and only if A and B are

ground.

François Fages 23



Groundness analysis of reverse

Concrete CLP(H) program:

rev(A,B) :- A=[], B=[].

rev(A,B) :- A=[X|L], rev(L,K), append(K,[X],B).

Abstract CLP(Bool) program:

rev(A,B) :- A=true, B=true.

rev(A,B) :- A=X/\L, rev(L,K), append(K,X,B).

SBool
P ↑ 0 = ∅

SBool
P ↑ 1 = {A = true, B = true|rev(A, B)}

SBool
P ↑ 2 = SBool

P ↑ 1∪{A = X, B = X|rev(A, B)}

= SBool
P ↑ 1 ∪ {A = B|rev(A, B)}

SBool
P ↑ 3 = SBool

P ↑ 2∪{A = X ∧ L, L = K, B = K ∧ X|rev(A, B)}

= SBool
P ↑ 2 ∪ {A = B|rev(A, B)}= SBool

P ↑ 2 = SBool
P ↑ ω

François Fages 24



Constraint-based Model Checking

Analysis of unbounded states concurrent systems by CLP programs

[Delzanno Podelski 99]

Concurrent transition systems defined by condition-action rules [Shankar]

condition φ(~x) action ~x′ = ψ(~x)

Translation into CLP clauses over one predicate p (for states)

p(~x)← φ(~x), ψ(~x′, ~x), p(~x′).

The transitions of the concurrent system are in one-to-one correspondance

to the CSLD derivations of the CLP program.

Proposition 15 The set of states from which a set of states defined by a

constraint c is reachable is the set

lfp(TP ) where P is the CLP program plus the clause p(~x)← c(~x).

François Fages 25



Computation Tree Logic CTL

Temporal logic for branching time:

States described by propositional or first-order formulas

Two path quantifiers for non-determinism: A “for all transition paths”

E “for some transition path”

Several temporal operators: X “next time”, F “eventually”,

G “always”, U “until”.

AG¬φ “Safety” property.

AFψ “Liveness” property.

Duality: for any formula φ we have EFφ = ¬AG¬φ and EGφ = ¬AF¬φ.

François Fages 26



Symbolic Model Checking

Model checking is an algorithm for computing, in a given Kripke structure

K = (S, I, R), I ⊂ S,R ⊂ S × S, the set of states which satisfy a given CTL

formula φ, i.e. the set {s ∈ S|K, s |= φ}.

Basic algorithm: when S is finite, represent K as a graph, and iteratively

label the nodes with the subformulas of φ which are true in that node.

Add A to the states satisfying A (¬A, A ∧B,...)

Add EFφ (EXφ) to the (immediate) predecessors of states labeled by φ

Add E(φUψ) to the predecessor states of ψ while they satisfy φ

Add EGφ to the states for which there exists a path leading to a non trivial

strongly connected components of the subgraph restricted to the states

satisfying φ

Symbolic model checking: uses OBDD’s to represent states and

transitions as boolean formulas (S is finite).

François Fages 27



Constraint-based Model Checking

Constraint-based model checking [Delzanno Podelski 99] applies to Kripke

structures with an infinite set of states

Numerical constraints provide a finite representation for an infinite set of

states.

Constraint logic programming theory:

EF (φ) = lfp(TR∪{p(~x):−φ})

EG(φ) = gfp(TR∧φ)

Prototype implementation in Sicstus Prolog + Simplex, CLP(H,FD,R,B)

François Fages 28


